
MEAD Documentation
v3.07

Dragomir Radev, University of Michigan
John Blitzer, University of Pennsylvania
Adam Winkel, University of Michigan

Michael Topper, University of Michigan
Arda Çelebi, USC/ISI

Wai Lam, Chinese University of Hong Kong

http://www.summarization.com/mead/

November 17, 2002

1

Contents

1 Introduction 5
1.1 What is automatic text summarization? . 5
1.2 Sentence Extraction . 5
1.3 The MEAD System . 5
1.4 MEAD Functionality . 5
1.5 Sample Use Cases . 6

2 Downloading and Installation 6
2.1 Downloading the MEAD Distribution . 6
2.2 External Software . 6
2.3 Installing MEAD . 7

3 MEAD Usage 8
3.1 An Example Cluster: GA3 . 8
3.2 Summarizing the GA3 cluster . 8
3.3 So what does mead.pl really do? . 10
3.4 How mead.pl locates clusters . 10
3.5 Command-line options to mead.pl . 11

4 Advanced MEAD 13
4.1 Specifying summaries using mead-config files . 13
4.2 Using .meadrc files to specify defaults . 14

5 MEAD XML Objects 15
5.1 Common Objects . 15

5.1.1 mead-config . 15
5.1.2 Cluster . 16
5.1.3 Docsent . 16
5.1.4 Extract . 18
5.1.5 Summary . 18

5.2 Less Common MEAD Objects . 18
5.3 SentFeature . 19

5.3.1 SentJudge . 19
5.3.2 Query . 19

5.4 XML Objects not used by core MEAD . 20
5.4.1 Document . 20
5.4.2 Docpos . 20
5.4.3 Docjudge . 20
5.4.4 Sentalign . 22
5.4.5 Sentrel . 22

6 MEAD Interfaces 22
6.1 mead.pl . 22
6.2 driver.pl . 23
6.3 MEADlib . 23

7 Features and Feature Scripts 24
7.1 Introduction to MEAD Features . 24
7.2 Sent-Feature Files . 24
7.3 Three-Pass Feature Calculation . 24

7.3.1 The Cluster Stage . 26
7.3.2 The Document Stage . 26
7.3.3 The Sentence Stage . 26

7.4 A Skeleton Feature Extraction Routine . 26

2

8 MEAD Classifiers 26
8.1 The Default Classifier: default-classifier.pl . 26

8.1.1 Command Line Arguments . 27
8.1.2 Using new features with default-classifier.pl . 27

8.2 Other Classifiers . 27
8.2.1 random-classifier.pl . 27
8.2.2 leadbased-classifier.pl . 28

8.3 Creating a New Classifier . 28

9 MEAD Rerankers 28
9.1 The Default Reranker: default-reranker.pl . 28

9.1.1 Command Line Arguments . 30
9.1.2 Changing the parameters of default-reranker.pl . 30

9.2 Other Rerankers . 30
9.2.1 identity-reranker.pl . 30
9.2.2 novelty-reranker.pl . 31

9.3 Creating a New Reranker . 31

10 MEAD Add-Ons 31
10.1 Additional scripts . 31
10.2 Pre-processing MEAD input and Post-processing MEAD output 33

11 Really Advanced MEAD 33
11.1 Producing Query-Based Summaries . 33
11.2 Producing Alignment-Based Summaries . 34
11.3 Constructing IDF Databases . 34

12 Evaluation using MEAD Eval 34

13 Running MEAD in Other Languages 35
13.1 Summarizing Chinese Documents with MEAD . 35

13.1.1 Preliminary Notes . 35
13.1.2 List Format . 35
13.1.3 GB18030 Compatability . 36
13.1.4 System Compatibility . 36
13.1.5 Running The Example . 36

13.2 Porting to Other Languages . 37

14 Training MEAD using Support Vector Machines 37
14.1 Data Format . 37
14.2 Porting . 37
14.3 Training . 38
14.4 Tuning (Development) . 38
14.5 Testing . 38

15 The MEAD Web site 38

16 Frequently Asked Questions 39
16.1 Is additional MEAD-compatible data available? . 39
16.2 Is there a mailing list for MEAD? . 39
16.3 Can I contribute to MEAD? . 39
16.4 Do I need a license to use MEAD? . 39
16.5 How can I get help? . 39
16.6 How can I make sure I understand the details of how MEAD works? 39

17 Demos 39

3

18 Future Work 40

19 Credits 41

A XML DTDs 41
A.1 cluster.dtd . 41
A.2 docjudge.dtd . 42
A.3 docpos.dtd . 43
A.4 docsent.dtd . 44
A.5 document.dtd . 44
A.6 extract.dtd . 45
A.7 mead-config.dtd . 45
A.8 query.dtd . 46
A.9 reranker-info.dtd . 47
A.10 sentalign.dtd . 47
A.11 sentfeature.dtd . 48
A.12 sentjudge.dtd . 48
A.13 sentrel.dtd . 48

4

MEAD User Documentation

1 Introduction

1.1 What is automatic text summarization?

According to [Man01], ”the goal of automatic summarization is to take an information source, extract content
from it, and present the most important content to the user in a condensed form and in a manner sensitive to the
user’s or application’s need”.

1.2 Sentence Extraction

Extractive summarization is a very robust method for text summarization. It involves assigning salience scores to
some units–usually sentences or paragraphs–of a document or a set of documents and extracting these with the
highest scores.

1.3 The MEAD System

MEAD is a publicly available toolkit for multi-lingual summarization and evaluation. The toolkit implements
multiple summarization algorithms (at arbitrary compression rates) such as position-based, Centroid[RJB00],
TF*IDF, and query-based methods. Methods for evaluating the quality of the summaries include co-selection
(precision/recall, kappa, and relative utility) and content-based measures (cosine, word overlap, bigram overlap).

MEAD v1.0 and v2.0 were developed at the University of Michigan in 2000 and early 2001. MEAD v3.01
– v3.06 were written in the summer of 2001, an eight-week summer workshop on Text Summarization was held
at Johns Hopkins University. Seehttp://www.clsp.jhu.edu/ws2001/groups/asmd for workshop
information. The workshop final report [RTS+02] is also available from the JHU site. As of Version 3.07,
MEAD has been back to the University of Michigan, undergoing continuous development by the Computational
Linguistics And Information Retrieval (CLAIR) group.

MEAD is written in Perl and requires a several XML-related Perl modules and an external software package
to run. Also, a number of other modules and packages can be used in various extensions of MEAD. A full list of
these software packages is included in the Downloading and Installation Section.

MEAD is intended to be used with multiple languages. The MEAD system can summarize English documents
on all POSIX-conforming operating systems (Unix, Linux, etc.). MEAD can also summarize Mandarin Chinese
documents on some POSIX operating systems.

Because of the inconsistencies in encodings, we have only tested MEAD in Mandarin Chinese on certain
versions of the Solaris operating system and some versions of Linux. Please contact the mailing list (see below) if
you are interested in porting MEAD to new OS’s. Adding new (human) languages should also be relatively easy,
especially languages that use common character sets.

1.4 MEAD Functionality

MEAD can perform many different summarization tasks. It can summarize individual documents or clusters of
related documents (multi-document summarization).

MEAD includes two baseline summarizers: lead-based and random. Lead-based summaries are produced by
selecting the first sentence of each document, then the second sentence of each, etc. until the desired summary
size is met. A random summary consists of enough randomly selected sentences (from the cluster) to produce a
summary of the desired size.

MEAD has been primarily used for summarizing documents in English, but recently, Chinese capabilities have
been added to the publicly available version of MEAD. We regret to inform the reader that Chinese summarization
is in the alpha stage and may fail, depending on the encoding used and the platform. We envision it being relatively
easy to coerce MEAD to produce summaries of other languages as well, but we have yet to back up this claim.

Query-based summarization is often used in natural language circles, and is (not coincidentally) included in
MEAD as well. A later section of this document details query-based summarization in MEAD.

The MEAD evaluation toolkit (MEAD Eval), previously available as a separate piece of software, has been
merged into MEAD as of version 3.07. This toolkit allows evaluation of human-human, human-computer, and
computer-computer agreement. MEAD Eval currently supports two general classes of evaluation metrics: co-
selection and content-based metrics. Co-selection metrics include precision, recall, Kappa, and Relative Utility,
a more flexible cousin of Kappa. MEAD’s content-based metrics are cosine (which uses TF*IDF), simple cosine

5

MEAD User Documentation

(which doesn’t), and unigram- and bigram-overlap. Relevance correlation has previously been used in conjunction
with MEAD, but is not included with the current distribution. MEAD Eval has its very own section, near the end
of this document.

1.5 Sample Use Cases

MEAD can be used in a variety of scenarios; here are a few in which MEAD can come in handy. MEAD can be
used to evaluate an existing summarizer. Users can use the MEAD framework to build a summarizer entirely from
scratch or they may reuseexisting pieces of MEAD. MEAD can be used to evaluate the impact of a new sentence
feature on the summarization process or to test a new evaluation metric.

2 Downloading and Installation

2.1 Downloading the MEAD Distribution

Several versions of MEAD, including the current version, 3.07, can be downloaded from the MEAD website:

http://tangra.si.umich.edu/clair/mead

MEAD-3.07.tar.gz contains everything you need to get started using MEAD.

2.2 External Software

External software is either used directly by MEAD (e.g. Perl and Perl modules) or in various applications of
MEAD (e.g. Support Vector Machines (SVM) to train MEAD). Required software includes a recent release of
Perl itself, and several modules. Optional software includes several other Perl modules and some non-Perl related
software packages. A full list is given below.

We have included the essential packages of external software with the MEAD distribution, but if you wish to
download them and other useful packages yourself, the most recent versions can be found on CPAN (www.cpan.org).
Note that the versions of the modules included with the MEAD distribution may be out of date. The user may
download the latest versions from CPAN (www.cpan.org) and install them himself.

MEAD’s installation script will install all the required modules on your system, if they are not present. How-
ever, MEAD doesn’t install the modules as the superuser, so they aren’t generally available to other Perl programs.
If you want these modules installed in the regular Perl way, you should install them yourself. Again, see CPAN
(www.cpan.org) for instructions on how to install Perl modules.

• Perl 5.5 or above

– http://www.perl.com

– MEAD will likely work for any version of Perl at or above 5.0, but this is NOT guaranteed.

• XML::Parser - required

– http://www.cpan.org/authors/id/C/CO/COOPERCL/XML-Parser.2.30.tar.gz

• Expat – required

– http://sourceforge.net/projects/expat/

– Expat is a publicly avaible parsing tool used by the XML::Parser module.

• XML::Writer - required

– http://www.cpan.org/authors/id/DMEGG/XML-Writer-0.4.tar.gz

• XML::TreeBuilder - required

– http://www.cpan.org/authors/id/S/SB/SBURKE/XML-TreeBuilder-3.08.tar.
gz

6

MEAD User Documentation

• Text::Iconv - required

– http://search.cpan.org/CPAN/authors/id/M/MP/MPOITR/Text-Iconv-1.2.tar.
gz

• Support Vector Machines (SVM) - optional

– http://ais.gmd.de/\˜{}thorsten/svm_light/

– SVM can be used to train MEAD’s classifier.

• SMART - optional

– ftp://ftp.cs.cornell.edu/pub/smart/

– for evaluation by Relevance Correlation

• LT-XML - optional

– http://www.ltg.ed.ac.uk/software/xml/index.html

– This software can be used to check an XML document against the DTD that specifies its form. It is
highly recommended that you use this or similar software.

2.3 Installing MEAD

1. You must have Perl installed to install MEAD. The English examples referred to in this documentation have
been tested with Perl 5.6.0 on Solaris 5.7 and Linux (kernel 2.2 and 2.4). The Chinese examples have been
tested on Linux (kernel 2.2) with Perl 5.6.0.

2. Unpack MEAD-3.07.tar.gz. Several directories will be created. Of course, the absolute paths to each of
these conceptual directories will be different from machine to machine (or from installation to installa-
tion). Thus, when you see $MEADDIR or another conceptual subdirectory in this documentation,
substitute the appropriate directory on your machine.

• $MEAD DIR = the result of the unpacking process. This is the base directory where MEAD is to be
installed.

• $BIN DIR = $MEAD DIR/bin
This directory contains MEAD executables, including mead.pl, driver.pl, and MEAD’s core classifiers
and rerankers.

• $SCRIPTSDIR = $BIN DIR/feature-scripts
This subdirectory of $BINDIR contains MEAD feature scripts.

• $LIB DIR = $MEAD DIR/lib
The $LIB DIR directory contains Perl modules used by MEAD.

• $DOCSDIR = $MEAD DIR/docs
Documentation is kept here.

• $DATA DIR = $MEAD DIR/data
Example clusters live here.

• $DTD DIR = $MEAD DIR/dtd
DTD’s for all the MEAD XML objects are kept here.

• $ETC DIR = $MEAD DIR/etc
contains IDF DBM files and possibly other peripheral resources.

• $USERDIR = $MEAD DIR/user
contains a sample .meadrc file (NOTE: it’s really there, you may have to run “ls -a” to display it,
though.) and a sample mead/data directory that a user might have in his home directory.

7

MEAD User Documentation

3. Before running the installation script, you may want to check if you have the four required modules installed
and install them in the normal Perl manner. If you don’t have a Perl module installed, MEAD’s install script
will automatically install a copy that only it can use, so if you plan on doing XML-related work in Perl, it
may well be worth your while to install these modules yourself before installing MEAD.

Note that if at some later time, you install any of the four required modules, pre-existing versions on MEAD
will not use them. You must re-install MEAD if you really want it to use your newly installed modules.

4. From $MEADDIR, run “perl Install.PL ”. This installs any needed modules that were not previ-
ously on your sytstem, automatically changes the #! directives in all Perl scripts to the correct path for your
system, updates a MEAD path variable in the MEAD::MEAD module, and builds English and Chinese IDF
DBM files in your architecture’s specific format.

If you experience installation-related problems with MEAD, refer toInstall.PL ’s output when contact-
ing the MEAD team.

3 MEAD Usage

3.1 An Example Cluster: GA3

On August 23, 2000, an Gulf Air Airbus crashed off the coast of Bahrain in the Persian Gulf. This disaster
trigerred hundreds (probably thousands) of online news articles in the following days and weeks. Many of these
articles were collected as a sample cluster on a large news story.

Three such documents (in docsent format) are included with the MEAD distribution as an example cluster.
These documents were selected from a much larger set of documents on the Gulf Air crash, thus explaining their
somewhat cryptic names: articles 41, 81, and 87. This cluster is located in the$DATA_DIR/GA3 directory and
has the following strucure:

$DATA_DIR/GA3/GA3.cluster
/GA3.config
/GA3.10.extract
/GA3.20.extract
/GA3.sentjudge
/GA3.query
/docsent/*.docsent
/feature/GA3.*.sentfeature

TheGA3directory contains a cluster file, GA3.cluster; a config file, GA3.config; two extract files, one at 10%,
the other at 20%; a sentjudge file; an example query file; and subdirectories containing docsent files and feature
files. Each of these types of files will be explained in detail in later sections. For purposes of summarizing the
cluster, only the cluster and docsent files are needed:

$DATA_DIR/GA3/GA3.cluster
/docsent/*.docsent

The mead.pl script assumes (by default) that a cluster has this structure (minimally, a cluster file in the direc-
tory and a subdirectory named docsent containing all the docsent files named in the cluster file), unless the user
tells the script otherwise (See the section on .meadrc files for how this is done, although this is not required.). For
now, stick to this structure. Note that MEAD’s $DATADIR is by default not writable except by the user who
installed MEAD. The GA3/feature directory, which is a by-product of summarization, is already created. If it
were not, MEAD would run into problems.

3.2 Summarizing the GA3 cluster

For the purposes of these examples (and to make them easier to read), we assume that we’re in the$BIN_DIR
directory. MEAD can be run from other directories by correctly specifying the path to mead.pl. To go to
$BIN_DIR , use the following command,replacing $BIN_DIR with the corresponding path on your ma-
chine.

8

MEAD User Documentation

% cd $BIN_DIR

Alternately, one can append$BIN_DIR to the PATH environment variable, which will effectively do the same
thing. On my machine, the following command does the job.

% export PATH=$PATH:$BIN_DIR

where $BINDIR is the conceptual directory described in the Installation Section. This above command may
be a bit confusing, as $XXX is used in an overloaded manner in this document. First of all, Perl’s scalar vari-
ables are named beginning with a ’$’. We have tried to keep the referencing of Perl variables to a minimum in
this document. Second, Unix, Linux, etc. environment variables begin with a ’$’. However, the only environ-
ment variable mentioned in this document is PATH ($PATH). Also, this document uses $XXX to refer to one of
MEAD’s conceptual directories. These conceptual directories are as listed in a previous section; when in doubt,
assume that a word beginning with a ’$’ is a conceptual directory. An example, given that your $BINDIR is
located at /usr/mead/bin, is:

% export PATH=$PATH:/usr/mead/bin

In general, MEAD is run as follows:

% ./mead.pl [options] cluster_name

Here are some examples of summarizing the GA3 cluster.

% ./mead.pl GA3

summarizes the GA3 cluster and writes a summary to the standard output.

% ./mead.pl -extract GA3

writes an extract to standard output.

% ./mead.pl -words -absolute 100 GA3
% ./mead.pl -w -a 100 GA3

write a summary of about 100 words to standard output. By default, MEAD’s compression basis is “sen-
tences” and by default, MEAD will give a 20 percent summary.

% ./mead.pl -sentences -percent 10 GA3
% ./mead.pl -s -p 10 GA3

In this example, the “-sentences” (or “-s”) is unnecessary, as that is the default. The user may also specify
an absolute number of sentences to extract, or a percentage of words. In general (and unless stated otherwise),
mead.pl’s options mix and match well.

% ./mead.pl -extract -output GA3.extract GA3
% ./mead.pl -output ../data/GA3.summary GA3

These examples make use of the -o (-output) option. This writes the output (be it a extract, summary, or
meadconfig object) to the specified file instead of the standard output.

% ./mead.pl -RANDOM GA3
% ./mead.pl -system RANDOM GA3

% ./mead.pl -LEADBASED GA3

9

MEAD User Documentation

% ./mead.pl -system LEADBASED GA3

The above examples produce random and lead-based summaries, respectively. In general, the “-system”
option just gives a name to the configuration that you’re using. The “RANDOM” and “LEADBASED” systems
are special in that when you specify either of these systems, special classifiers and rerankers are used, instead of
the default ones.

The user can specify non-standard classifiers and rerankers using the-classifier and-reranker op-
tions, respectively. For more information on classifiers and rerankers are and how to write new ones, see the
appropriate section.

The user can also specify alternate scripts to calculate the default features: Length, Position, and Centroid; or
add new features using the-feature option. See the MEAD Architecture Section for how to do this (and why
you might want to).

If you just want to give a name to the configuration, then you can say:

% ./mead.pl -system MySystem GA3

Note that the name of your system cannot start with a hyphen. This causes MEAD to think that no argument to
the system option is given and that the name of your system is the next command line option. Obviously, MEAD
may do something unpredictable. If you push the envelope when using MEAD, it may collapse around you.

3.3 So what does mead.pl really do?

mead.pl is really just a (hopefully) smart wrapper around the core MEAD driver script, driver.pl, which is in
turn a wrapper around MEAD’s feature scripts, classifiers, rerankers. It also encapsulates the functionality of
extract-to-summary.pl and the now-defunct write-config.pl.

First of all, driver.pl takes as input (to its standard input) a meadconfig object and writes an extract object
to its standard output. (Both of these objects are described in detail in future sections.) In between, driver.pl is
responsible for creating any specified features that don’t already exist and calling the classifier and reranker. For
more information on these pieces of MEAD, see the appropriate sections.

MEAD does not check that feature files are up to date, or even that they specify features for the right cluster.
If you change the cluster by adding, removing, or modifying the documents, you MUST also remove the old
sentfeature files as well (these are usually stored in the “feature” subdirectory of each cluster) to avoid getting
junk summaries or simply crashing MEAD. However, this aspect of MEAD can be useful, when the user already
has such features computed. As an example, in the Document Understanding Conference (DUC) competition,
participants were given the number of words each sentence contained. Since segmenters may segment a given
sentence differently, resulting in different sentence lengths, we put the given length calculations in a feature file
in the feature directory, thereby avoiding potential mixups.

The above is the limit of driver.pl’s functionality. It does not take command-line arguments and it cannot
output summaries or meadconfig files. The mead.pl script was created to easily build a meadconfig XML object
suitable for feeding to driver.pl and to receive driver.pl’s output, possibly creating a summary from the returned
extract.

3.4 How mead.pl locates clusters

One of the major benefits of mead.pl is that it does its best to locate clusters that aren’t immediately available.
This is an improvement over the operation of driver.pl and mead-config files, as with this approach, the user
must explicitly specify the full path to the cluster. mead.pl locates clusters by checking for the cluster in some
predefined locations (e.g. the /mead/data directory in the user’s home directory, if present) as well as user-
defined locations (via-data_path options to the command line anddata_path in .meadrc files). mead.pl’s
procedure is as follows:

1. mead.pl checks if the cluster argument specified is an absolute path. If so, it will use that path. Example:

% mead.pl /usr/home/mead/data/GA3

2. mead.pl checks if the cluster argument is a subdirectory of the current directory. If it is and an appropriate
cluster file exists in the subdirectory, that directory is used.

10

MEAD User Documentation

3. Command-line datapath options to mead.pl are checked next. The user may specify one directory, or
multiple directories separated by colons (:).

4. mead.pl checks the user’s .meadrc file for a datapath option. Each colon-separated directory is checked for
the cluster. If the -meadrc command-line option is specified, mead.pl checks that meadrc file instead.

5. The user’s /mead/data directory is checked next. If the directory doesn’t exist, this step is ignored.

6. Any datapath options in $MEADDIR/.meadrc are checked.

7. Finally, MEAD’s data directory, $DATADIR, is checked. Note that this is a last-ditch effort to find the
cluster. Also, this makes the examples more readable. :)

3.5 Command-line options to mead.pl

Most users will only use the first several of these options. These common options have already been detailed
above.

What follows is a full listing of the command-line options for mead.pl. Note that the options for .meadrc files
(described in a future section) make use of these same options.

• -help , -?

print help information and exit. Help info consists of the list of available options and is meant to be a
reminder of what options are available,not a comprehensive how-to. Refer to this section for how to use
each option.

• -summary

produce a summary (This is the default.)

• -extract

produce an extract (instead of a summary)

• -meadconfig

produce a meadconfig object (instead of a summary or extract).

• -centroid

produces centroid information

• -scores

print the feature values and composite score (as assigned by the classifier) for each sentence. The user
can specify a non-standard feature set, which will be the features printed, and/or a non-standard classifier,
which computes the composite scores.

• -output_mode mode

mode can be either “summary”, “extract”, or “meadconfig”. The -summary, -extract, and -meadconfig op-
tions are shorthand for “-outputmode summary”, “-outputmode extract”, and “-outputmode meadconfig”,
respectively.

• -basis basis, -b basis, -compression_basis basis

The argument can be either “words” or “sentences”. See below.

• -sentences, -s

produce a summary whose length is either an absolute number or a percentage of the number ofsentences
of the original cluster. (This is the default.)

• -words, -w

produce a summary whose length is either an absolute number or a percentage of the number ofwordsof
the original cluster.

11

MEAD User Documentation

• -percent num, -p num, -compression_percent num

produce a summary whose length is num% the length of the original cluster. (The default is -percent 20)

• -absolute num, -a num, -compression_absolute num

produce a summary whose length is num (words/sentences) regardless of the size of the original cluster.
NOTE: if both -percent and -absolute are specified, MEAD’s behavior may be erratic.

• -system sys

give the configuration the name “sys”. Except for the special cases RANDOM and LEADBASED, this just
adds this field to the extract.

• -system RANDOM, -RANDOM

produce a random summary (and name the system “RANDOM”).

• -system LEADBASED, -LEADBASED

produce a lead-based summary, selecting the first sentence from each document, then the second sentence,
etc.. (and name the system “LEADBASED”). NOTE: RANDOM and LEADBASED systems override any
classifier, reranker, and features that may be specified.

• -feature name commandline

add a feature named “name” whose feature script is run by “commandline” to the feature set or replace the
existing feature of the same name. Note however, that if the target cluster already have sentfeature files for
the specified feature, those will be used and the specified script will NOT be run.

NOTE: this option takes two arguments, as opposed to the rest, which take only one.

• -classifier commandline

use the specified classifier instead of the default. NOTE: if the classifier command takes arguments, make
sure to enclose the commandline with quotes to make the shell interpret it as a single argument. However,
when specifying a classifier in a .meadrc file, quotes are not necessary.

• -reranker commandline

use the specified ranker instead of the default. See the NOTE for -classifier.

• -lang language

The default is “ENG”. This option doesn’t really do a whole lot currently. Since mead.pl doesn’t currently
do Chinese summarization, you’ll probably never have to specify “CHIN”. To do summarizaton in Chinese,
refer to the appropriate section (you’ll have to use the old-fashioned meadconfig file method).

• -data_path path

look for the target cluster in each of the directories specified by path. The name of the cluster (the last thing
on the command line) is appended to each element of path. Each of these constructed directories is checked
to see if it contains the cluster (and the desired directory structure) as described in the beginning of this
section.

The user can specify multiple directories by separating two directories with a colon, e.g., “/usr/mead/data:-
/usr/local/clusters/”.

Any datapath options given in the user’s and system’s .meadrc files are appended to the search path. The
search begins in the current directory, regardless of whether “.” was actually specified in any datapath
option (command line or .meadrc file).

• -cluster_dir dir

look for the target cluster in the specified directory ONLY. This blocks any datapath arguments provided.

If this option is specified, the cluster file MUST be in the argument to this option (not in a subdirectory, nor
a directory with the same name as the cluster).

NOTE: use this option sparingly. Probably the only time when this option should be used is when there
are multiple clusters named the same thing in different pieces of datapath (which can be specified in the
.meadrc files).

12

MEAD User Documentation

• -docsent_dir dir

look for docsent files in the specified directory, instead of some subdirectory of the cluster directory.

• -feature_dir dir

look for and/or output feature files in/to the specified directory, instead of some subdirectory of the cluster
directory.

• -docsent_subdir subdir

look for docsent files in the specifiedsubdirectory of the cluster directory. By default, this is “docsent”.
This option is supported in order to conform to the cluster file structures used by older systems.

• -feature_subdir subdir

look for feature files in the specifiedsubdirectory of the cluster directory. By default, this is “feature”. This
option is supported in order to conform to the cluster file structures used by older systems.

• -meadrc rcfile

use the specified .meadrc file instead of the one (possibly) located in the user’s home directory. You must
supply the entire path (including the filename) of the new rc file.

4 Advanced MEAD

4.1 Specifying summaries using mead-config files

Prior to version 3.07, MEAD was used like

% cat ../data/GA3/GA3.config | ./driver.pl > ../data/GA3/GA3.xx.extract

which produces an extract file in the ../data/GA3 directory. The above command assumes that ../data/GA3/GA3.config
is a mead-config file that specifies the desired summary, including compression rates, etc.

If one wanted a summary, then he would run

% ./extract-to-summary.pl ../data/GA3/GA3.cluster ../data/GA3/docsent \
../data/GA3/GA3.xx.extract

which writes a summary to the standard output. Of course, this can be redirected to a file, e.g. ../data/GA3/GA3.xx.summary.

Now, the user can instead run

% ./mead.pl -o GA3.xx.summary GA3

(or)

% ./mead.pl -p 17 -w -o GA3.17.pct.words.summary GA3

Of course, the old ways of doing things, catting files to driver.pl and using extract-to-summary.pl still work,
but it is recommended that all but the most die-hard of MEAD purists (if there are such individuals) use mead.pl
instead.

Regardless, there are probably instances where using a config file is preferable, especially with aberrant file
structures, etc. In such a case, you can use mead.pl to produce a meadconfig file (using the “-meadconfig” option)
and then modify the resulting config file. Alternately, you can write your own meadconfig file from scratch.
Obviously, the latter is not recommended.

13

MEAD User Documentation

4.2 Using .meadrc files to specify defaults

Many Unix-style applications allow specification of options using .rc files. These “dot files” allow the user to
specify options in a file without having to type them in at the command line each time MEAD is used.

The mead.pl script reads two rc files and uses the options they specify. First, MEAD reads the file: $MEADDIR/-
.meadrc, which contains system-wide defaults. Next, MEAD reads the user’s .meadrc file. By default, MEAD
looks for a file named .meadrc in the user’s home directory. (This is fairly standard in Unix-style apps.) Alter-
nately, the user can specify a different rc file with

% ./mead.pl -rc new.meadrc

This allows the user to create many different configurations for MEAD without having to specify many op-
tions on the command line. If the user wishes to ignore the .meadrc file in his/her home directory (if there is one),
then specify a non-existant file, as in

% ./mead.pl -rc none

given that no file named “none” exists in the current directory.
Specifying a meadrc file is as easy as creating a file named .meadrc in your home directory and adding any

number of options, one per line. Figure 1 is a sample .meadrc file which specifies that mead.pl should run in
extract mode instead of the default summary mode, and produce summaries that on average are about 200 words
in length. Also, the RANDOM special system is specified. This means that random baseline summaries will be
produced. Note that it’s probably not a good idea to specify the RANDOM system in a .meadrc file, as this system
is intended as a baseline for evaluation of high-quality summarizers; this example is for illustrative purposes only.

compression_basis words
compression_absolute 200
output_mode extract
system RANDOM

Figure 1: Sample .meadrc file

The options supported in .meadrc files arealmostidentical to those supported by mead.pl via the command
line. Note that the an rc file does not have to be named .meadrc; such a file can be named anything allowable on the
platform. However, names that include “meadrc” in some way (e.g. “meadrc2”) allow other users a more intuitive
understanding of which files do what. Additionally, secondary .meadrc files should probablynot be dotfiles, as
they may get lost or forgotten. Note also that mead-config files generally end in “.config” or “.meadconfig”, which
means that non-sadists should avoid using these extensions in naming .meadrc files.

A .meadrc file can currently have all the following options that a mead.pl can take as command-line options
(without the hyphens). Those command-line options that have “short-hand” versions (e.g. “-summary”, “-p
20”, and “-RANDOM”) should be expanded to their more/most verbose versions “-outputmode summary”, “-
compressionpercent 20”, “system RANDOM”, respectively. A few other common options used in .meadrc files
are “compressionbasis” and “datapath”.

The “feature”, “classifier”, and “reranker” options all involve specifying scripts (and any needed arguments)
for MEAD to run via the command line. When specifying them as arguments to mead.pl, they should appear in
quotes so the shell will group the script and its arguments as one item. However, when specifying these options in
a .meadrc file, no quotes are needed. In the case of “feature” options, the second group of non-spaces is taken to be
the feature name and the remainder of the line is taken to be the script (with argument, if necessary). Everything
after “classifier” or “reranker” is taken to be the script and arguments.

Figure 2 shows a .meadrc file that specifies a “datapath” option, as well as a nonstandard feature and a new
classifier command that uses that feature. See the appropriate sections for more information on features, feature
scripts, and classifiers.

Although the .meadrc files can have an option that can be specified on the command line to mead.pl, some
options should not in general be specified in .meadrc files. One such option is “clusterdir”, which specifies the
only place where MEAD should look for the cluster file.

14

MEAD User Documentation

compression_basis words
compression_absolute 200
output_mode meadconfig

Notice the ’:’ separating two directories.
data_path /usr/home/winkela:/usr/home/winkela/data

This is a comment.
Note that the ’\’ on the next line indicates a continuation
of that line.
feature SimWithFirst \

/clair4/mead/bin/feature-scripts/SimWithFirst.pl

Note that we don’t need quotes here...
classifier /clair4/mead/bin/default-classifier.pl Length 9 \

Centroid 1 Position 1 SimWithFirst 1

Figure 2: A more adventurous .meadrc file

For a full listing of the options that .meadrc files can have, see the appropriate section in the Getting Started
section on mead.pl command-line options or type “./mead.pl -help ” from $BIN_DIR .

5 MEAD XML Objects

This subsection describes the XML objects used as input to and output from MEAD, as well as communication
between the different components of MEAD. The DTDs describing these objects used are listed at the end of this
document.

5.1 Common Objects

By “Common Objects”, we mean objects that are often used directly by the user. These include the mead-config,
cluster, docsent, extract, and summary objects. Mead-config objects and extract objects are the input and output,
respectively, of driver.pl. mead.pl and extract-to-summary.pl can output summary objects. And of course, cluster
and docsent objects represent the actual cluster to be summarized.

5.1.1 mead-config

The MEAD driver program ($BIN_DIR/driver.pl) reads a mead-config file from its standard input. This file
specifies several pieces of information that it needs to summarize a cluster, including the location of the cluster,
the features to compute and where to store them on disk, the classifier to use (with any arguments), the reranker
to use, and the desired summary size. Figure 3 shows an example mead-config file.

We now describe the functions of the various elements of a mead-config file and their attributes:

• <MEAD-CONFIG>

– LANG: the language of the cluster (currently “ENG” or “CHIN”)

– CLUSTER-PATH: Path to the .cluster file you want to summarize

– DOC-DIRECTORY: Path where the source documents in docsent format are located

– TARGET: The name of the cluster file (without the .cluster or directory)
Thus, if you want to summarize the cluster defined by /usr/home/data/GA3.cluster, TARGET = “GA3”

• <FEATURE-SET>

– BASE-DIRECTORY: Path where MEAD will look for and/or produce features

15

MEAD User Documentation

<MEAD-CONFIG TARGET=’GA3’ LANG=’ENG’ CLUSTER-PATH=’/clair4/mead/data/GA3’
DATA-DIRECTORY=’/clair4/mead/data/GA3/docsent’>

<FEATURE-SET BASE-DIRECTORY=’/clair4/mead/data/GA3/feature/’>
<FEATURE NAME=’Centroid’

SCRIPT=’/clair4/mead/bin/feature-scripts/Centroid.pl HK-WORD-enidf ENG’/>
<FEATURE NAME=’Position’

SCRIPT=’/clair4/mead/bin/feature-scripts/Position.pl’/>
<FEATURE NAME=’Length’

SCRIPT=’/clair4/mead/bin/feature-scripts/Length.pl’/>
</FEATURE-SET>

<CLASSIFIER COMMAND-LINE=’/clair4/mead/bin/defalut-classifier.pl \
Centroid 1 Position 1 Length 9’ SYSTEM=’MEADORIG’ RUN=’10/09’/>

<RERANKER COMMAND-LINE=’/clair4/mead/bin/default-reranker.pl MEAD-cosine 0.7’/>

<COMPRESSION BASIS=’sentences’ PERCENT=’20’/>

</MEAD-CONFIG>

Figure 3: Mead Config object

• <FEATURE>

– NAME: The name of the feature to use

– SCRIPT: The full-path command (including options) to run the script used to generate this feature if it
does not exist in BASE-DIRECTORY (above). Note: DOC-DIRECTORY (above) will be appended
as an argument to this command when the feature script is run. See the section on Features for more
information.

• <CLASSIFIER>

– COMMAND-LINE: Command to call the classifier to be used, including all command-line arguments

• <RERANKER>

– COMMAND-LINE: Command to call the reranker to be used, including all command-line arguments

• <COMPRESSION>

– BASIS: sentences or words

– PERCENT: length, in percent of the size of the full cluster (in the specified BASIS), that the summary
should be

– ABSOLUTE: length, in absolute number of sentences of words (as specified by basis), that the sum-
mary should be. Note that exactly one of PERCENT and ABSOLUTE should be specified.

5.1.2 Cluster

A cluster object lists the names of the documents that will be summarized. Figure 4 shows the cluster file for the
GA3 cluster. Each DID corresponds to a file named $DID.docsent in the GA3 cluster’s docsent subdirectory, e.g.
$DATA DIR/GA3/docsent/41.docsent.

5.1.3 Docsent

A Docsent object is a document segmented into sentences. Firgure 5 shows the first several sentences from
document 41 from the GA3 cluster.

16

MEAD User Documentation

<?xml version=’1.0’?>
<!DOCTYPE CLUSTER SYSTEM ’/clair4/mead/dtd/cluster.dtd’>

<CLUSTER LANG=’ENG’>
<D DID=’41’ />
<D DID=’81’ />
<D DID=’87’ />

</CLUSTER>

Figure 4: Example Cluster Object

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE DOCSENT SYSTEM ’/clair4/mead/dtd/docsent.dtd’>

<DOCSENT DID=’41’ LANG=’ENG’>
<BODY>
<HEADLINE>
<S PAR="1" RSNT="1" SNO="1">Egyptians Suffer Second Air
Tragedy in a Year </S>
</HEADLINE>
<TEXT>
<S PAR=’2’ RSNT=’1’ SNO=’2’>CAIRO, Egypt -- The crash of a
Gulf Air flight that killed 143 people in Bahrain is a disturbing
deja vu for Egyptians: It is the second plane crash within a
year to devastate this Arab country.</S>
<S PAR=’2’ RSNT=’2’ SNO=’3’>Sixty-three Egyptians were on
board the Airbus A320, which crashed into shallow Persian Gulf
waters Wednesday night after circling and trying to land in
Bahrain.</S>
<S PAR=’2’ RSNT=’3’ SNO=’4’>On Oct. 31, 1999, a plane carrying
217 mostly Egyptian passengers crashed into the Atlantic Ocean
off Massachusetts.</S>
<S PAR=’2’ RSNT=’4’ SNO=’5’>The cause has not been determined,
providing no closure to the families, whose grief was reopened
this month with the release of a factual report by the National
Transportation Safety Board.</S>
</TEXT>
</BODY>
</DOCSENT>

Figure 5: Docsent object

17

MEAD User Documentation

5.1.4 Extract

An Extract contains a list of sentences that will be used in the summary. Sentences are sorted in the order they
appear. Figure 6 shows a seven-sentence extract of the GA3 cluster.

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE EXTRACT SYSTEM ’/clair/tools/mead/dtd/extract.dtd’>

<EXTRACT QID=’GA3’ LANG=’ENG’ COMPRESSION=’7’
SYSTEM=’MEADORIG’ RUN=’Sun Oct 13 11:01:19 2002’>
<S ORDER=’1’ DID=’41’ SNO=’2’ />
<S ORDER=’2’ DID=’41’ SNO=’3’ />
<S ORDER=’3’ DID=’41’ SNO=’11’ />
<S ORDER=’4’ DID=’81’ SNO=’3’ />
<S ORDER=’5’ DID=’81’ SNO=’7’ />
<S ORDER=’6’ DID=’87’ SNO=’2’ />
<S ORDER=’7’ DID=’87’ SNO=’3’ />
</EXTRACT>

Figure 6: Example Extract Object

5.1.5 Summary

The Summary is the final output from the summarization process. Note that Summary objects are not XML-
compliant. Instead, they are meant to be the human readable output of MEAD.

[1]The Disaster Relief Fund Advisory Committee has approved a
grant of $3 million to Hong Kong Red Cross for emergency relief
for flood victims in Jiangxi, Hunan and Hubei, the Mainland.
[2]Together with the earlier grant of $3 million to World Vision
Hong Kong, the Advisory Committee has so far approved $6 million from the
Disaster Relief Fund for relief projects to assist the victims
affected by the recent floods in the Mainland.
[3]The Disaster Relief Fund Advisory Committee has approved a
grant of $3 million to the Salvation Army for emergency relief
for flood victims in Hunan and Guangxi, the Mainland.
[4]The Disaster Relief Fund Advisory Committee has approved a
grant of $5.39 million to Medecins Sans Frontieres for emergency
relief for flood victims in Hunan, Sichuan and Yunnan, the Mainland.
[5]To ensure that the money will be used for the purpose
designated, the Government has required Medecins Sans Frontieres
to submit an evaluation report and audited accounts on the use of
the grant after the project has been completed.

Figure 7: Summary object

5.2 Less Common MEAD Objects

This category of MEAD objects are used by driver.pl and may be used by the user, for instance, when using the
relative-utility.pl script to evaluate an extract.

18

MEAD User Documentation

5.3 SentFeature

A sentfeature object assigns (possibly several) feature scores to each sentence in a cluster. Figure 8 shows a few
selected lines from the Centroid sentfeature file for the GA3 cluster.

<?xml version=’1.0’?>

<SENT-FEATURE>
<S DID="87" SNO="1" >
<FEATURE N="Centroid" V="0.274894051973267" />
</S>
<S DID="87" SNO="2" >
<FEATURE N="Centroid" V="0.828824590972425" />
</S>
<S DID="81" SNO="1" >
<FEATURE N="Centroid" V="0.153774221389168" />
</S>
<S DID="81" SNO="2" >
<FEATURE N="Centroid" V="1.000000000000000" />
</S>
<S DID="41" SNO="1" >
<FEATURE N="Centroid" V="0.153896779384946" />
</S>
<S DID="41" SNO="2" >
<FEATURE N="Centroid" V="0.981981515400504" />
</S>
</SENT-FEATURE>

Figure 8: An example SentFeature object

5.3.1 SentJudge

A sentjudge object is used to describe sentence utility scores given by judges to individual sentences in a document
or cluster. Figure 9 shows an example sentjudge file.

<?xml version=’1.0’?>
<SENT-JUDGE QID=’551’>
<S DID=’D-19980731_003.e’ PAR=’1’ RSNT=’1’ SNO=’1’>

<JUDGE N=’smith’ UTIL=’10’/>
<JUDGE N=’huang’ UTIL=’10’/>
<JUDGE N=’moorthy’ UTIL=’6’/>

</S>
<S DID=’D-19980731_003.e’ PAR=’2’ RSNT=’1’ SNO=’2’>

<JUDGE N=’smith’ UTIL=’6’/>
<JUDGE N=’huang’ UTIL=’10’/>
<JUDGE N=’moorthy’ UTIL=’10’/>

</S>
<S DID=’D-19980731_003.e’ PAR=’3’ RSNT=’1’ SNO=’3’>

<JUDGE N=’smith’ UTIL=’6’/>
<JUDGE N=’huang’ UTIL=’9’/>
<JUDGE N=’moorthy’ UTIL=’10’/>

</S>
<S DID=’D-19981105_011.e’ PAR=’5’ RSNT=’2’ SNO=’7’>

<JUDGE N=’smith’ UTIL=’2’/>
<JUDGE N=’huang’ UTIL=’1’/>
<JUDGE N=’moorthy’ UTIL=’4’/>

</S>
</SENT-JUDGE>

Figure 9: Sentjudge object

5.3.2 Query

A query object describes the text of a retrieval query. Query objects are used in query-based summarization. See
the appropriate section in Really Advanced MEAD.

19

MEAD User Documentation

<?xml version=’1.0’?>
<!DOCTYPE QUERY SYSTEM "/clair4/mead/dtd/query.dtd" >

<QUERY QID="Q-551-E" QNO="551" TRANSLATED="NO">
<TITLE>
Natural disaster victims aided
</TITLE>
<DESCRIPTION>
The description is usually a few sentences describing the
cluster.
</DESCRIPTION>
<NARRATIVE>
The narrative often describes exactly what the user is looking
for in the summary.
</NARRATIVE>
</QUERY>

Figure 10: An example Query object

5.4 XML Objects not used by core MEAD

5.4.1 Document

The document object represents a document which is not explicitly segmented into sentences. The document
object is not currently used by core MEAD. Instead, the documents in a cluster are stored as docsent files.

<?xml version=’1.0’?>
<!DOCTYPE DOCUMENT SYSTEM ’/clair4/mead/dtd/document.dtd’>

<DOCUMENT DID=’D-19970701_001.e’ DOCNO =’1’ LANG=’ENG’ >
<EXTRACTION-INFO SYSTEM=’./hkmead.pl Centroid 1 Position 1
Length 9’ RUN=’’ COMP
RESSION=’20’ QID=’D-19970701_001.e’/>
<BODY>
<TEXT>
The ceremony took place in the Grand Hall of the Hong Kong Convention
and Exhibition Centre (HKCEC) Extension and was attended by some 4,000
guests, including foreign ministers and dignitaries from more than 40
countries and international organisations, and about 400 of the
world’s media. Representing China were Mr Jiang; HE Mr Li Peng,
Premier of the State Council of the PRC; HE Mr Qian Qichen, Vice
Premier of the State Council of the PRC; General Zhang Wannian, Vice
Chairman of the Central Military Commission of the PRC; and HE Mr Tung
Chee Hwa, the Chief Executive of the Hong Kong Special Administrative
Region (HKSAR) of the PRC. This was followed at the stroke of
midnight by the playing of the Chinese National Anthem and the raising
of the Chinese national flag and the flag of the Hong Kong Special
Administrative Region (HKSAR) within the first minute of the new day
(Tuesday). Entry of Guards of Honour Entry of Officiating Parties
Salute by Guards of Honour Speech by His Royal Highness The Prince of
Wales Entry of Flag Parties British National Anthem Lowering of Union
and Hong Kong Flags

Chinese National Anthem Raising of Chinese and Hong Kong Special
Administrative Region Flags Departure of Flag Parties Speech by
President of the People’s Republic of China, Mr Jiang Zemin Departure
of Officiating Parties

Departure of Guards of Honour
</TEXT>
</BODY>
</DOCUMENT>

Figure 11: Document object

5.4.2 Docpos

A docpos object is a document with Part of Speech Tags.

5.4.3 Docjudge

A docjudge object describes the retrieval ranking obtained from the search engine (Smart) given a query.

20

MEAD User Documentation

<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE DOCPOS SYSTEM ‘/clair4/mead/dtd/docpos.dtd’ >

<DOCPOS DID=’D-19970701_001.e’ LANG=’ENG’>
<BODY>
<HEADLINE>
<S PAR=’1’ RSNT=’1’ SNO=’1’> <W C=’JJ’>Solemn</W> <W
C=’NN’>ceremony</W> <W C=’VBZ’>marks</W> <W
C=’NNP’>Handover</W> </S>
</HEADLINE>
<TEXT>
<S PAR=’2’ RSNT=’1’ SNO=’2’><W C=’DT’>A</W> <W
C=’JJ’>solemn</W><W C=’,’>,</W> <W C=’JJ’>historic</W> <W
C=’NN’>ceremony</W> <W C=’VBZ’>has</W> <W C=’VBN’>marked</W> <W
C=’DT’>the</W> <W C=’NN’>resumption</W>
<W C=’IN’>of</W> <W C=’DT’>the</W> <W C=’NN’>exercise</W> <W
C=’IN’>of</W> <W C=’NN’>sovereignty</W> <W
C=’IN’>over</W> <W C=’NNP’>Hong</W> <W C=’NNP’>Kong</W> <W
C=’IN’>by</W> <W C=’DT’>the</W> <W
C=’NNS’>People</W><W C=’POS’>’s</W> <W C=’NNP’>Republic</W> <W
C=’IN’>of</W> <W C=’NNP’>China</W><W
C=’.’>.</W></S>
<S PAR=’3’ RSNT=’1’ SNO=’3’><W C=’PRP$’>His</W> <W
C=’NNP’>Royal</W> <W C=’NNP’>Highness</W> <W
C=’NNP’>The</W> <W C=’NNP’>Prince</W> <W C=’IN’>of</W> <W
C=’NNP’>Wales</W> <W C=’CC’>and</W> <W
C=’DT’>the</W> <W C=’NNP’>President</W> <W C=’IN’>of</W> <W
C=’DT’>the</W> <W C=’NNS’>People</W><W
C=’POS’>’s</W> <W C=’NNP’>Republic</W> <W C=’IN’>of</W> <W
C=’NNP’>China</W> <W C=’(’>(</W><W
C=’NNP’>PRC</W><W C=’)’>)</W> <W C=’NNP’>HE</W> <W C=’NNP’>Mr</W>
<W C=’NNP’>Jiang</W> <W
C=’NNP’>Zemin</W> <W C=’DT’>both</W> <W C=’NN’>spoke</W> <W
C=’IN’>at</W> <W C=’DT’>the</W> <W
C=’NN’>ceremony</W><W C=’,’>,</W> <W C=’WDT’>which</W> <W
C=’VBD’>straddled</W> <W C=’NN’>midnight</W> <W
C=’IN’>of</W> <W C=’NNP’>June</W> <W C=’CD’>30</W> <W
C=’CC’>and</W> <W C=’NNP’>July</W> <W
C=’CD’>1</W><W C=’.’>.</W></S>
<S PAR=’4’ RSNT=’1’ SNO=’4’><W C=’DT’>The</W> <W
C=’NN’>ceremony</W> <W C=’VBD’>was</W> <W
C=’VBN’>telecast</W> <W C=’JJ’>live</W> <W C=’IN’>around</W> <W
C=’DT’>the</W> <W C=’NN’>world</W><W
C=’.’>.</W></S>
</TEXT>
</BODY>
</DOCPOS>

Figure 12: Docpos object

<?xml version=’1.0’?>
<!DOCTYPE DOC-JUDGE SYSTEM ‘/clair4/mead/dtd/docjudge.dtd’>

<DOC-JUDGE QID=’Q-2-E’ SYSTEM=’SMART’ LANG=’ENG’>
<D DID=’D-19981007_018.e’ RANK=’1’ SCORE=’9.0000’ />
<D DID=’D-19980925_013.e’ RANK=’2’ SCORE=’8.0000’ />
<D DID=’D-20000308_013.e’ RANK=’3’ SCORE=’7.0000’ />
<D DID=’D-19990517_005.e’ RANK=’4’ SCORE=’6.0000’ />
<D DID=’D-19981017_015.e’ RANK=’4’ SCORE=’6.0000’ />
<D DID=’D-19990107_019.e’ RANK=’12’ SCORE=’5.0000’ />
<D DID=’D-19990713_010.e’ RANK=’12’ SCORE=’5.0000’ />
<D DID=’D-19991207_006.e’ RANK=’12’ SCORE=’5.0000’ />
<D DID=’D-19990913_001.e’ RANK=’20’ SCORE=’4.0000’ />
<D DID=’D-19980609_005.e’ RANK=’20’ SCORE=’4.0000’ />
<D DID=’D-19990825_018.e’ RANK=’1962’ SCORE=’0.0000’ />
<D DID=’D-19990924_047.e’ RANK=’1962’ SCORE=’0.0000’ />

</DOC-JUDGE>

Figure 13: Docjudge object

21

MEAD User Documentation

5.4.4 Sentalign

A sentalign object describes the sentence mappings between two translations of the same document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SENTALIGN SYSTEM "/clair4/mead/dtd/sentalign.dtd">
<SENTALIGN ENG="20000119_002.e" CHI="20000119_002.c" LANG="english-chinese">
<SENT ORDER="1" EDID="D-20000119_002.e" ESNO="1" CDID="D-20000119_002.c"
CSNO="1" />
<SENT ORDER="2" EDID="D-20000119_002.e" ESNO="2" CDID="D-20000119_002.c"
CSNO="2" />
<SENT ORDER="3" EDID="D-20000119_002.e" ESNO="3" CDID="D-20000119_002.c"
CSNO="3" />
<SENT ORDER="4" EDID="D-20000119_002.e" ESNO="4" CDID="D-20000119_002.c"
CSNO="4" />
<SENT ORDER="5" EDID="D-20000119_002.e" ESNO="5" CDID="D-20000119_002.c"
CSNO="5" />
<SENT ORDER="6" EDID="D-20000119_002.e" ESNO="6" CDID="D-20000119_002.c"
CSNO="5" />
</SENTALIGN>

Figure 14: Sentalign object

5.4.5 Sentrel

A sentrel object describes relationships between pairs of sentences.

<?xml version=’1.0’?>
<!DOCTYPE SENT-REL SYSTEM "/clair4/mead/dtd/sentrel.dtd" >
<SENT-REL>
<R SDID=’47’ SSENT=’7’ TDID=’30’ TSENT=’29’>
<RELATION TYPE=’19’ JUDGE=’1’/>
<RELATION TYPE=’6’ JUDGE=’1’/>
</R>
</R>
<R SDID=’81’ SSENT=’45’ TDID=’87’ TSENT=’10’>
<RELATION TYPE=’19’ JUDGE=’1’/>
<RELATION TYPE=’15’ JUDGE=’5’/>
</R>
<R SDID=’63’ SSENT=’15’ TDID=’7’ TSENT=’11’>
<RELATION TYPE=’12’ JUDGE=’4’/>
</R>
<R SDID=’87’ SSENT=’24’ TDID=’81’ TSENT=’1’>
<RELATION TYPE=’15’ JUDGE=’2’/>
</R>
<R SDID=’47’ SSENT=’1’ TDID=’30’ TSENT=’24’>
<RELATION TYPE=’19’ JUDGE=’1’/>
</R>
</SENT-REL>

Figure 15: Sentrel Object

6 MEAD Interfaces

6.1 mead.pl

The mead.pl script is the primary interface to the MEAD summarization system. However, it is little more than
a wrapper around MEAD’s driver.pl script (which in turn calls other scripts) that combines options and defaults
from various sources (command-line options and .meadrc files) into mead-config object that is passed to driver.pl’s
standard input. It reads driver.pl’s output—an extract—and either writes the extract or the corresponding summary,
to either a file (if one is specified) or by default, the standard output.

The mead.pl script has already been described extensively in the MEAD Usage section. See that section for
said description.

22

MEAD User Documentation

6.2 driver.pl

The driver.pl script ties together all the inner workings of the MEAD summarizer. It takes as input a mead-config
object and yields an extract object as output. It is used by mead.pl to produce extracts (which can then be converted
to summary objects) but may also be used directly by the user bycat ing a mead-config file to its standard ouput.

driver.pl’s execution has several stages:

1. driver.pl first reads the mead-config object from the standard input.

2. The mead-config object specifies the features that should be computed via the FEATURE-SET element.
Each FEATURE subelement has NAME and SCRIPT attributes. The NAME attribute, not surprisingly,
specifies the name of the feature. The SCRIPT attribute specifies the shell command that should be run to
produce the feature.

This second stage locates these features on disk by looking in the BASE-DIRECTORY attribute of the
FEATURE-SET element in the mead-config object. A feature named “FeatureName” will be stored on disk
in a file named “ClusterName.FeatureName.sentfeature” in the BASE-DIRECTORY directory. If this file
exists, it is assumed to contain a feature named “FeatureName” for all and only the sentences in the cluster.
If sentences in the cluster do not have entries in the sentfeature file, they effectively have value zero in
subsequent calculations. On the other side of the coin, MEAD will not complain if a given sentfeature entry
does not correspond to a sentence in a document specified by the cluster file. It may even be included in the
extract of the cluster! However, errors may occur when producing a summary from the extract.

If the file does not exist, driver.pl calls the script specified and redirects the output to the appropriate file,
named as described above. Thus, if a certain cluster is summarized multiple times, the features are calcu-
lated the first time and are read from disk during subsequent summarization passes.

If the user already is given sentence features, he may create sentfeature files manually. If the sentfea-
ture files are named appropriately, they will be used just as if MEAD had created them during a previous
summarization run.

This “feature caching” is a double-edged sword. It speeds up the summarization process, sometimes con-
siderably, but it may also result in erroneous summaries caused by inconsistencies in the contents of the
cluster file and the sentfeature files. This commonly happens when documents are added to or removed
from the cluster, or in query-based summarization, when using two different queries in summarizing the
same cluster. More on the latter in the section on query-based summarization.

3. Next, driver.pl calls the classifier, which is specified via the CLASSIFIER element of the mead-config file.
The COMMAND-LINE attribue specifies the script to run (with arguments) to produce sentence scores.
These scores are for each individual sentence, and should not take into account inter-sentence relationships.
The combined sentfeatures are written to the classifier’s standard input, and the classifier must write a sen-
tjudge object to its standard output. For more information on the workings of classifiers and the classifiers
included with the MEAD distribution, see the section on classifiers.

4. The fourth task assigned to driver.pl is to call the reranker. As compared to the classifier, which assigns
scores to individual sentences, the reranker modifies these scores depending on relationships between sen-
tences. The input to the reranker is a reranker-info XML object. A reranker is an XML object made up of
three smaller components: the compression information (words or sentences, plus how many), the cluster’s
DIDs, and the sentence scores output by the classifier in the form of a sentjudge. A reranker must output
the modified sentence scores, again in sentjudge form. However, this sentjudge has the SENTS-FOR-SUM
attribute in the top-level element. This is interpreted by driver.pl as meaning that it should output the
SENTS-FOR-SUM top-scoring sentences as the extract.

5. The final job driver.pl does is to write out the exract, which is specified by the sentjudge written out by the
reranker.

6.3 MEADlib

MEADlib is a collection of Perl modules used extensively by MEAD. They may be useful for related applications,
especially those related to language processing. MEADlib can be used to evaluate extractive as well as abstractive

23

MEAD User Documentation

summaries, segment text, read in files of many of MEAD’s XML formats, convert between these formats, and
write files of these formats.

MEADlib is a work in progress, so documentation is not included here. Any documentation will be linked off
the MEAD web site.

7 Features and Feature Scripts

7.1 Introduction to MEAD Features

MEAD extractive summaries score sentences according to certain sentence features (hence the “sentfeature” ob-
ject). The default classifier (default-classifier.pl) uses Position, Centroid, and Length, but MEAD features can
potentially refer to any feature that a sentence has (how many named entities or anaphora it contains, for in-
stance). The only stipulation that MEAD places on its features is that they be real-valued. However, the authors
recommend that each feature be normalized to have a value between zero and one for each sentence. Although
not technically necessary, it allows humans to more easily select appropriate weights for the linear combination
used by the classifier to score sentences based on features.

In addition to the default features of Position, Centroid, and Length, the MEAD distribution contains sev-
eral other potentially useful features including SimWithFirst, which computes the cosine similarity between a
sentence and the first sentence in the document; IsLongestSentence, which assigns a score of one if the sen-
tence is the longest in its document, and zero otherwise; and three query-based feature scripts: QueryCosine.pl,
QueryCosineNoIDF.pl, and QueryWordOverlap.pl, which compute the various measures of similarity between the
sentence and (potentially) three parts of the given query. See the Query-based Summarization section for more
information on these last feature scripts.

In order to facilitate the creation and integration of new features, MEAD provides an interface to the feature
calculation, and writing via the MEAD::SentFeature Perl module. This section describes the use of this library.

7.2 Sent-Feature Files

Sent-Feature files contain the values of features for each sentence. These are the output of all Feature Calculation
scripts. An example sentfeature file is shown in an earlier section. A feature script that uses MEAD::SentFeature::-
extractsentfeatures does not need to explicitly write Sent-Feature files; the library will do this for you. Essentially,
the library function opens the cluster, and makes a series of callbacks to subroutines of the feature script. During
these callbacks, the script can calculate the value of one or more features for each sentence and tell MEAD these
values.

7.3 Three-Pass Feature Calculation

Feature Calculation is done in three stages: Cluster, Document, and Sentence. Each stage is implemented by a
subroutine in the feature script corresponding to that stage. The cluster subroutine is called only once. Then the
document subroutine is called once for each document in the cluster. Finally the sentence subroutine is called for
each sentence in the cluster. All the information available at the sentence stage is available at each of the other
stages. Feature calculation is done in this three-stage manner to save the user the time and aggravation of writing
for-loops to iterate over the documents and sentences in the cluster.

The Cluster and Document stages are optional, and need not be implemented by the user. However, every
feature scriptmust use the Sentence stage, as this is theonly time that a score can be assigned to a sentence.

Rather than confuse the reader by trying to explain how to use the MEAD::SentFeature::extractsentfeatures
library function to compute features, the author will refer the reader to an example feature script, Skeleton.pl,
which lives in $SCRIPTSDIR. An annotated version of this file is shown in Figure 16.

The key point to notice is the call to extractsentfeatures several lines into the script. This routine will read the
cluster filename (and the query filename, if given) from the standard input and open this (these) object(s).

The $datadir variable points to the directory containing the docsent files whose sentences you want to calculate
the features for.

Note that the ’Sentence’, ’Document’, and ’Cluster’ strings must appear verbatim (case-sensitive) as the key
of the hash entry whose value is the reference to the corresponding subroutine.

24

MEAD User Documentation

#!/usr/bin/perl

use strict;

use FindBin;
These are just the lib directories where MEAD’s modules live.
use lib "$FindBin::Bin/../../lib", "$FindBin::Bin/../../lib/arch";

use MEAD::SentFeature;

my $datadir = shift;

extract_sentfeatures($datadir, {’Cluster’ => \&cluster,
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $clusterref = shift;

foreach my $did (keys %$clusterref) {
This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$clusterref{$did};

}
}

sub document {
my $docref = shift;

for my $sentref (@$docref) {
This will produce each sentence in the document,
and because the document subroutine is called with
each document, it will produce every sentence in the
cluster.
my $text = $$sentref{’TEXT’};

}
}

sub sentence {
my $feature_vector = shift;
my $sentref = shift;

my $did = $$sentref{"DID"};
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT"};

You can compute more than one feature at a time,
but all but one may be "lost" as driver.pl looks for features
in files with names that include the feature name.
$$feature_vector{"Skeleton"} = $sno/10;
$$feature_vector{"Feature2"} = length($did);

}

Figure 16: An example Feature Script

25

MEAD User Documentation

7.3.1 The Cluster Stage

The Cluster routine is passed a cluster and do any needed processing using that cluster. This routine is called once
per cluster.

• Clusters are references to hashes whose keys are DIDs (strings) and whose values are Documents.

• Documents are references to arrays of Sentences.

• Sentences are references to hashes whose keys are features names (strings) and whose values are the values
of those features. The features passed to the feature script in the $sentref variable are:

“TEXT” (string) The text of the sentence

“DID” (string) The DID of the document to which the sentence belongs

“SNO” (string) The number of the sentence in its document

7.3.2 The Document Stage

The Document routine is passed a Document and can do the desired processing (if any) using that Document.
This routine is called once for each document in the cluster. Documents are references to arrays of Sentences (See
above for a description of a Sentence).

7.3.3 The Sentence Stage

Sentence routines are passed two variables: A Sentence and a reference to a feature vector. Sentences are described
in the “Cluster Stage” section above. Feature vectors are hashes whose keys are the names of features (strings)
and whose values are the (real numbered) values of the features named by those strings. For example:

{’Centroid’ => 0.2, ’Position’ => 0.5}

After the Sentence routine has been called for every sentence in every document in the cluster, the ex-
tract sentfeatures routine writes to standard output a sentfeature file containing the values for the features specified
in the featurevector for each sentence. (Subsequently, driver.pl redirects this output to the appropriate file.)

7.4 A Skeleton Feature Extraction Routine

As previously mentioned an example feature script, $SCRIPTSDIR/Skeleton.pl, is including with the MEAD
distribution. Note that the “use lib” statement near the top of Skeleton.pl must be modified to point to “$LIBDIR”
and “$LIB DIR/arch”. The example works as given only if the feature script is in $SCRIPTSDIR.

The following command will write a sentfeature object to the standard output:

echo ’$DATA_DIR/GA3/GA3.cluster’ | $SCRIPTS_DIR/Skeleton.pl $DATA_DIR/GA3/docsent

8 MEAD Classifiers

8.1 The Default Classifier: default-classifier.pl

The classifier computes scores for each sentence.

• Input: A sentfeature file in XML format is written to the classifier’s standard input. Every feature file
specifies, for each sentence in a cluster, a set of features and a value for each feature.

• Output: A classifier must write a sentjudge file in XML format to its standard output. As previously
described, a sentjudge for a cluster contains a a real number utility judgement for each sentence in that
cluster. In the case of a classifier’s output, this utility judgment is interpreted as the sentence’s score.

26

MEAD User Documentation

8.1.1 Command Line Arguments

The COMMAND-LINE attribute of CLASSIFIER (in a mead-config file) should read

$BIN_DIR/default-classifier.pl feature1 weight1 feature2 weight2 ...

Each sentence receives a score that is a linear combination of the features listed (provided they are in the input
feature file) EXCEPT for the “Length” feature. The weight of each feature in the linear combination is specified
after each feature name. “Length”, if it is given, is a cutoff feature. Any sentence with a length shorter than
“Length” is automatically given a score of 0, regardless of its other features. “Length” is the only feature that has
these semantics.

Thus, a COMMAND-LINE attribute of

$BIN_DIR/default-classifier.pl Centroid 2 Position 0.5 Length 12

has the following interpretation:

score(sentence) =
{

2 · (Centroid) + 0.5 · (Position) : Length(s) > 12
0 : Length(s) < 12

}
The default weights for Centroid and Position are both 1. The default Length cutoff is 9. The above example’s
weights were changed for illustrative purposes.

8.1.2 Using new features with default-classifier.pl

Using new features with default-classifier.pl is realtively easy. First, the desired feature must either be precom-
puted in sentfeature format in an appropriately-named and -located fileor the user must have a feature script for
computing the feature. Next, the user must add a FEATURE element to the FEATURE-SET in the mead-config
file used as input to driver.pl. Alternately, mead.pl will do this for you: use the “-feature” command-line option
or the “feature” .meadrc file option. See the appropriate sections for more information on these alternatives. Fi-
nally, the user must modify the COMMAND-LINE attribute of the CLASSIFIER element in the mead-config file.
Again, mead.pl can also do this. Then run MEAD as usual using this modified mead-config file (or the arguments
to mead.pl).

8.2 Other Classifiers

MEAD comes with a couple classifiers in addition to default-classifier.pl. These are random-classifier.pl and
leadbased-classifier.pl, which are vital parts of the lead-based and random summarizers that are part of the MEAD
distribution.

8.2.1 random-classifier.pl

The random-classifier.pl script is part of the random baseline summarizer. This classifier assigns a random score
between 0 and 1 to each sentence. If a “Length” argument is provided, random-classifier will assign a score of 0
to all sentences that do not meet this length cutoff. Note that for the cutoff mechanism to work, the Length feature
must be specified in the FEATURE-SET. Two valid COMMAND-LINE attributes of the CLASSIFIER element
are:

$BIN_DIR/random-classifier.pl

and

$BIN_DIR/random-classifier.pl Length 10

27

MEAD User Documentation

8.2.2 leadbased-classifier.pl

The leadbased-classifier.pl script is part of the leadbased baseline summarizer. This classifier assigns a score of
1/n to each sentence, wheren is the sentence’s SNO in the corresponding docsent file. This means that the first
sentence in each document will have the same scores, the second sentence in each document will have the same
scores, etc. Again, if a “Length” feature argument is provided, the sentences with lengths less than the specified
value are thrown out. Valid COMMAND-LINE attributes utilizing the leadbased-classifier.pl script are:

$BIN_DIR/leadbased-classifier.pl

and

$BIN_DIR/leadbased-classifier.pl Length 12

8.3 Creating a New Classifier

A classifier is a script that follows the covenant for MEAD classifiers (it doesn’t even have to be written in Perl): it
takes as input a sentfeature object, possibly with multiple features, does some processing, and outputs a sentjudge
object with a score for each sentence in the cluster.

Figure 17 shows a bare-bones classifier that assigns a score of 0.5 to each sentence. Note that several portions
of this example have been abbreviated in the interest of clarity and brevity. All of the classifiers that are packages
with MEAD have this general form. The one thing that changes is thecompute_scores function. For the
actual bodies of the subroutines mentioned here, look in any of these scripts. A few things to notice about this
script:

1. %fnames and@all_sents
These are global variables that all functions can use.%fnames is a hash from feature names to feature
weights to use in a linear combination.@all_sents is an array of sentrefs of the same form that are used
in feature script callbacks.

2. The block of code marked by the “# Execution Code ” comment need not change. The only thing that
need change is thecompute_scores subroutine. The following items detail the execution inside this
block of code.

3. Theparse_options subroutine builds the%fnames hash from the command-line options passed to the
script as detailed in any of the classifier descriptions.

4. The next two lines, which call theread_sentfeatures andflatten_cluster fromMEAD::SentFeature
andMEAD::Cluster , respectively, read the sentfeature from the standard input and populate the@all_sents
array.

5. The next call is key:compute_scores . Just about any classifier can be constructed by implementing
this one sentence. See the MEAD classifiers to examplecompute_scores functions. The idea is to
compute scores, probably but not necessarily based on the input features, and put each sentence’s score into
the sentref’s “FinalScore” hash.

6. The final line of this block of code callswrite_sentjudge , which writes out the required sentjudge
object whose “UTIL” values are the values of each sentence’s “FinalScore” hash value.

The framework given in Figure 17 has proven flexible enough for us to write any needed classification script.
Although the user is not required to use this format when writing his own classifier, it may save much time and
aggravation to do so.

9 MEAD Rerankers

9.1 The Default Reranker: default-reranker.pl

The reranker is used to modify sentence scores based on relationships between pairs of sentences. For example,
it can be used to give lower scores to repeated instances of a sentence or higher scores to a sentence that has an
anaphoric relationship with another sentence.

28

MEAD User Documentation

#!/usr/bin/perl

use strict;

use FindBin;
use lib "$FindBin::Bin/../lib", "$FindBin::Bin/../lib/arch";

use XML::Writer;

use MEAD::Cluster;
use MEAD::SentFeature;

my %fnames = ();
my @all_sents = ();

Execution Code.
{

&parse_options();

my %features = read_sentfeature();
@all_sents = @{ flatten_cluster(\%features) };

Score the sentences based upon their weights
&compute_scores();

Write out the new scores to a sentjudge file
&write_sentjudge();

}

sub compute_scores {
foreach my $sentref (@all_sents) {

$$sentref(’FinalScore’) = 0.5;
}

}

sub parse_options {
subroutine body omitted

}

sub write_sentjudge {
subroutine body omitted

}

Figure 17: An example classifier

29

MEAD User Documentation

The input to a reranker is a reranker-info file A reranker-info file has three components: compression infor-
mation, cluster information, and the sentence scores as computed by the reranker. The compression information
has the same form as it does in the mead-config file: it specifies whether the BASIS should be “words” or “sen-
tences”, and how large the summary should be, either in comparison to the entire cluster (PERCENT) or as an
absolute size (ABSOLUTE). The cluster information looks almost exactly like a cluster file, but without the XML
headers. Rerankers may use this in order to open the cluster to examine and compare the text of each sentence.
The sentence scores take the form of a sentjudge file.

The default reranker orders the sentences by score from highest to lowest, and iteratively decides whether to
add each sentence to the summary or not. At each step, if the quota of words or sentences has not been filled, and
the sentence is not too similar to any higher-scoring sentence already in the summary, the sentence in question
is added to the summary. After the summary has been “filled,” the default reranker increases the scores of the
chosen sentences and decreases the scores of the disqualified (by similarity) or unchosen sentences.

Note that because the default reranker excludes sentences that are too similar to sentences already in the
summary, that the user may not be able to get a 100% summary using the default parameters. A simple workaround
is to set the similarity threshold to something greater than 1 or to simply use the identity reranker (see below).

The reranker, like the classifier, writes a sentjudge file to its standard output.

9.1.1 Command Line Arguments

The COMMAND-LINE attribute of RERANKER should resemble:

$BIN_DIR/default-reranker.pl SimFunction ThresholdValue IDFName

The SimFunction argument specifies the similarity function to compare sentences for similarity. Currently,
the only supported similarity function is “MEAD-cosine”. ThresholdValue specifies the maximum pairwise sim-
ilarity (according to the named metric) that sentences in the summary can have. So if similarity between any two
sentences is above the threshold, at most one of them will be included in the summary. The IDFName is the name
of the IDF DBM to use in computing similarity. In the case of default-reranker.pl, it is used by the MEAD-cosine
routine. An example COMMAND-LINE attribute follows.

$BIN_DIR/default-reranker.pl MEAD-cosine 0.7 enidf

This example says:

When comparing sentences in the above fashion, use the MEAD-cosine similarity routine (and the
enidf IDF database). If this routine returns a value greater than 0.7 for a pair of sentences, possibly
include only the higher-scoring of the sentences in a summary.

9.1.2 Changing the parameters of default-reranker.pl

As previously stated, the only similarity function currently supported is MEAD-cosine. We have also empirically
found that a cutoff of 0.7 disqualifies sentences that say roughly the same thing, but allows sentences that are on
the same topic but say different things. The user can choose to use a different IDF database, but this will likely
have little to no effect on the summary. See the section on Construction new IDF DBM’s for instructions on how
to do this.

9.2 Other Rerankers

The MEAD distribution comes with two rerankers in addition to default-reranker.pl.

9.2.1 identity-reranker.pl

The identity reranker does not modify the scores of sentences. It simply selects the appropriate number of sen-
tences given the compression information passed to it. What is such a reranker useful? Since the reranker is in
charge of selecting the number of sentences in a summary, identity-reranker.pl performs this task. Also, some
types of summaries may not take inter-sentence relationships into account. This is true of the random and lead-
based summarizers included with MEAD. In these cases, the identity reranker acts as a placeholder in the MEAD

30

MEAD User Documentation

framework, which requires that summarizers be built from features, a classifier, and a reranker. The identity
reranker takes no command-line arguments.

9.2.2 novelty-reranker.pl

The novelty reranker is the reranker we used as we participated in the Novelty Track in TREC 2002 (http://
trec.nist.gov). For this competition, users were asked to identify sentences which contain new information,
as sentences are passed sequentially through the system. We noticed that human judges often pick clusters of
sentences, whereas MEAD normally does not care about the spatial relationships between sentences within a
document. To exploit this hunch, we made a slight modification to the default-reranker.pl, boosting a sentence’s
score slightly if the previous sentence had a relatively high score. The difference between this script and the
default reranker amounts to a single subroutine call during the script’s execution. The novelty reranker takes
exactly the same command-line arguments as the default reranker.

9.3 Creating a New Reranker

Creating a new reranker is a bit more complicated than creating a classifier. Our formula for rerankers may not
work for all reranker functions. For this reason, we recommend thoroughly understanding two of the rerankers
that come with MEAD: default-reranker.pl and identity-reranker.pl. The latter may serve as a jumping-off point
for users wishing to write a reranker that doesn’t exclude similar sentences, while the former may be extended by
those who wish to do additional processing in addition to removing overly similar sentences.

However, we now briefly go over the workings of the default reranker in order to give the user a glimpse
into how writing a new reranker might be done. Figure 18 shows annotated portions of default-reranker.pl minus
some declarations at the top and boring subroutines at the bottom. We now go through each numbered part of the
Execution Code block of the script.

1. The first few lines parse the reranker-info input and fill in the global variables declare above the block
shown.

2. This block decides whether to do percent- or absolute-based compression.

3. Along with block #5, this block lays the groundwork for ensuring that all chosen sentences have higher
scores than non-chosen sentences. Here, we make sure that$bonus_for_chosen_sentences has a
value higher than any sentence’s score.

4. This block calls one of two methods, depending on whether we’re using word-based or sentence-based
summarization. The called method fills in an array called@final_sents , which after the call, contains
all and only the sentences to be included in the summary.

5. Along with block #3, this block actually adds the bonus to the chosen sentences’ scores, ensuring that
chosen sentences have higher scores than unchosen sentences.

6. This writes the output sentjudge to the standard output. All sentences (and their scores) are written out, not
just the chosen sentences.

We recommend that the reranker-writing user reuse at least the XML-reading and -writing code from the
standard MEAD reranker scripts. Most changes can be made in the getfinal sents methods, which may make life
easier for the user and for the MEAD team, when trying to interpret problematic output from the user.

10 MEAD Add-Ons

10.1 Additional scripts

MEAD has some additional scripts that do useful things. These scripts include:

• extract-to-summary.pl
This script converts an extract object to a summary object. It opens the specifies cluster and attempts to

31

MEAD User Documentation

#!/usr/bin/perl

much code omitted...

Execution Code
{

1
my $xml_parser = new XML::Parser(Handlers => {

’Start’ => \&read_rerankerinfo_handle_start,
’End’ => \&read_rerankerinfo_handle_end});

$xml_parser->parse(*STDIN);

2
if ($compression_absolute) {

undef $compression_percent;
} elsif ($compression_percent) {

undef $compression_absolute;
} else {

$compression_percent = 20;
Debug("Neither percent nor absolute specified; using 20%",

3, "Main");
}

3
my $bonus_for_chosen_sentences = 10000.0;
foreach my $sentref (@all_sents) {

if ($$sentref{’Score’} > $bonus_for_chosen_sentences) {
$bonus_for_chosen_sentences += $$sentref{’Score’};

}
}

4
if ($compression_basis eq "sentences") {

get_final_sents_by_sentences();
} else { # $compression_basis eq "words"

get_final_sents_by_words();
}

5
foreach my $sentref (@final_sents) {

$$sentref{’Score’} += $bonus_for_chosen_sentences;
}

6
&write_sentjudge();

}

sub get_final_sents_by_sentences {
subroutine body omitted.

}
sub get_final_sents_by_words {

subroutine body omitted.
}

Several subroutines to do XML parsing and writing
have been omitted.

Figure 18: An example reranker

32

MEAD User Documentation

fetch the text of each extracted sentence from the cluster. Use extract-to-summary.pl as follows:

% ./extract-to-summary.pl cluster_file docsent_dir extract_file

If you have $BINDIR in your path, and are in$DATA_DIR/GA3, you can say:

% extract-to-summary.pl GA3.cluster ./docsent GA3.10.extract

• write-idf.pl
This script builds an IDF database file in an architecture-specific format. See the Constructing IDF Databases
subsection in Really Advanced MEAD for details.

• make-CHIN-docsent.pl This script is used to build docsent files from Chinese text, a process that may cause
problems if not done correctly. See the Summarizing Chinese Documents with MEAD section for details.

Many additional convenience-type scripts are planned. These scripts will include support for producing doc-
sent and cluster files quickly and easily from a set of (possibly diverse) documents and document formats. Also,
this functionality will be built into mead.pl, so the user can directly summarize any type of document or docu-
ments, e.g. text or HTML.

10.2 Pre-processing MEAD input and Post-processing MEAD output

MEAD can be used even when the input documents are not in docsent format and/or the desired output format
is not extract format or MEAD’s summary format. Most input formats will probably resemble docsent format,
especially for extractive summarization tasks. Most formats have some idea of a document ID’s (DID) and most
number sentences (SNO), so the conversion between formats may be accomplished easily using an XSL engine,
or can be done using parts of MEADlib. MEAD’s output may be converted to an extract that contains the text
either by using an XSL engine, or again by using MEAD::Extract and MEAD::Cluster, two pieces of MEADlib.
MEADlib’s documentation is only online at this point, so refer to the MEAD homepage for this information.

11 Really Advanced MEAD

Some MEAD-related activities that should be in this section are so complicated that they each merit a section of
their own. So the following two sections—on running MEAD in other languages (mainly Chinese), and using
SVM to train MEAD—are effectively separate, but have strong ties to this section.

11.1 Producing Query-Based Summaries

Producing query-based summaries within the MEAD framework is as easy as specifying a modified set of features
and modifying the classifier command, minus a caveat or two.

Three MEAD feature scripts: QueryCosine.pl, QueryCosineNoIDF.pl, and QueryWordOverap.pl, compute
various sentence features in relation to the given query. Each of these feature scripts can compute up to three fea-
tures, one for each of the three parts of a query object. For example, QueryCosine.pl can compute QueryTitleCo-
sine, QueryDescriptionCosine, and QueryNarrativeCosine, which are the cosine similarity between each sentence
and the title, description, and narrative of the query, respectively. QueryCosineNoIDF.pl and QueryWordOver-
lap.pl do much the same, but with different similarity metrics:MEAD::Evaluation::simple_cosine for
the former, andMEAD::Evaluation::unigram_overlap for the latter.

The first argument to each of these scripts is a “-q” option, which takesexactlyone of four options:

• t, title
Compute only QueryTitleXXX.

• d, description
Compute only QueryDescriptionXXX.

33

MEAD User Documentation

• n, narrative
Compute only QueryNarrativeXXX.

• a, all
Compute all three of the above features.

The second argument to each of these scripts is the name of the query file to use in the query-based summary.

Note that for use with MEAD, only the first three arguments to “-q” should be used. This is because MEAD
looks for each feature in a separate file in the feature directory. A sample SCRIPT attribute of for one of these
features is:

$SCRIPTS_DIR/QueryCosine.pl -q title $DATA_DIR/GA3/GA3.query

This will compute the QueryTitleCosine feature, so the NAME attribute should be “QueryTitleCosine” as
well. Note that as with all MEAD feature scripts, the “datadir” argument will be appended to the command and
the cluster filename will be echoed to the standard input. See the section on MEAD Features for more information.

Now to use the newly-computed feature, you must modify the CLASSIFIER COMMAND-LINE attribute
in your mead-config file. The following example is a slight modification of MEAD’s default feature weighting,
adding “QueryTitleCosine” to the linear combination with weight 1.

$BIN_DIR/default-classifier.pl Length 9 Centroid 1 Position 1 \
QueryTitleCosine 1

Then run MEAD as usual.

NOTE: The caveat mentioned is regarding MEAD’s caching of features. If the user changes the query (or the
contents of the cluster), he must delete the cluster’s QueryXXX feature files as well.

11.2 Producing Alignment-Based Summaries

TODO: Someone who knows how to do this, write me.

11.3 Constructing IDF Databases

Half of the construction of new IDF databases is made easy for the user. The write-idf.pl script takes as input the
name of the destination IDF DBM and the name of a plain text file, which has pairs of word/idf values. The script
creates the DBM if it isn’t there already, and puts each of the pairs into the hash.

The harder part of making IDF databases is actually computing the IDF value for each word in the corpus.
Such a script is included with versions 3.06 and below, but this second script has been removed for version 3.07,
as it only works in very specific situations. It may be rewritten and included in future versions of MEAD. In
the meantime, writing a script that computes IDF for a large corpus is not very taxing. Besides, the default IDF
databases included with the MEAD distribution work reasonably well.

12 Evaluation using MEAD Eval

An old version of the MEAD Eval toolkit (which implements precision, recall, kappa, cosine, unigram and bigram
overlap, and relative utility) is available athttp://tangra.si.umich.edu/clair/meadeval .

As of MEAD 3.07, MEAD Eval is integrated with the core MEAD distribution. However, some function-
ality in the standalone version of MEAD Eval (namely, content-based similarity metrics) has not been included
in the MEAD Eval scripts: meadeval.pl and relative-utility.pl. However, this code still lives in MEADlib in
MEAD::Evaluation module. User code that uses this module in the standalone version of MEAD Eval should be
able to use the same module in MEAD v3.07. See the online documentation for the MEAD Eval API.

The meadeval.pl script, given two extract filenames as input, calculates three co-selection metrics and print
them to the standard output.

34

MEAD User Documentation

Thus, a sample call to MEAD Eval is:

% ./meadeval.pl $DATA_DIR/GA3/GA3.10.extract $DATA_DIR/GA3/GA3.20.extract

Although the output of this example is rather uninteresting (as the 20% extract contains all the sentences in
the 10% extract), it shows how meadeval.pl is used. Take a look at the code of this script to see how one might
call the content-based metrics in MEAD Eval.

Relative Utility (RU) has its own script: relative-utility.pl. In order to use RU, you must have a sentjudge file
for the cluster you’re evaluating. Sentjudge information is expensive, hence rare, so the use of RU may be limited
to the few clusters that have sentjudge information already computed. Regardless, the script is used as follows:

% ./relative-utility.pl $DATA_DIR/GA3/GA3.10.extract \
$DATA_DIR/GA3/GA3.sentjudge

The above command prints sentjudge and relative-utility information to the standard output. Most of the guts
of RU is actually implemented in the MEAD::SentJudge module of MEADlib. See this section of the online
documentation for more info.

13 Running MEAD in Other Languages

TODO: Someone who has run MEAD in Chinese, write this, ensuring that paths and script names have not
changed.

MEAD can summarize Chinese clusters as well as English. We anticipate that it would not be hard to modify
MEAD to summarize French or Spanish clusters, for example.

13.1 Summarizing Chinese Documents with MEAD

NOTE: the Chinese summarization functionality is effectively in an alpha stage of development. It may break at
any time without warning. This example may not be exactly correct, but is reasonably close.

13.1.1 Preliminary Notes

We have provided routines for converting clusters of plain text Chinese documents into MEAD compatible data.
The only stipulations we place on document formatting are as follows:

1. You should know the encoding of the documents you are working with. If you’re not sure, a good rule of
thumb is as follows:

Simplified Chinese: GB2312

Traditional Chinese: BIG5

2. All of the documents in the cluster should be encoded using the same standard (i.e. don’t mix BIG5 and
GB2312 documents).

3. The documents should be word-segmented. Note: We used the segmenter athttp://www.mandarintools.
com to segment the example. This segmenter is quite old, and we advise finding another one for best results.

13.1.2 List Format

If you wish MEAD to summarize your documents as a multidocument cluster, you should provide to us a file in
the following format:

35

MEAD User Documentation

<pointer-to-file1>
<pointer-to-file2>
...
<pointer-to-filen>

13.1.3 GB18030 Compatability

As of the writing of this document, the glibc implementation of iconv, a library which converts among different en-
codings is NOT fully compatible with the latest encoding standard of the People’s Republic of China (GB18030).
This means that many documents (I find about 1/4 on xin hua wang) from up-to-date Chinese websites will crash
the conversion routines.
NOTE: GB18030 is backwards compatible (all GB2312 encodings map to the same characters), so many doc-
uments that are actually encoded in GB18030 are labeled as GB2312 documents. If these documents contain a
character which is undefined in GB2312, they will crash the conversion scripts.

13.1.4 System Compatibility

1. Linux: Fully compatible with GB2312. Compatible with SOME parts of GB18030.

2. Solaris 7 and below: I have NOT gotten these to work on GB2312. This will be addressed ASAP. To test
your system try “iconv -f gb2312 -t BIG5 ”.

3. Solaris 8 and above: I haven’t had a chance to test these. Sun claims that Solaris 8 (02/02 patch) and above
are fully compatible with GB18030.

13.1.5 Running The Example

This example is a two-article cluster from xin hua wang (The website of China’s largest news agency). It discusses
Taiwan’s decision to use ”Common pinyin”. It is encoded in GB2312.

1. Go to $BINDIR.

% cd $BIN_DIR

2. Run the conversion script.

<LINUX USERS>
% ./make-CHIN-docsent.pl CHIN-example/commonpy.list GB2312

<SOLARIS USERS>
% ./make-CHIN-docsent.pl CHIN-example/commonpy.list gb2312

3. Edit the mead-config file.

You’ll need to have the mead-config file in a directory that is writable by you (chances are that $BINDIR
is not). The rest of this example assumes that the mead-config file is namedmead.config and is located
in the current directory.

<Change the cluster>
Replace TARGET="GA3" with TARGET="commonpy.list" in the
top-level MEAD-CONFIG element.

<Change the Language>
Replace LANG="ENG" with LANG="CHIN"
Replace "ENG" with CHIN" in the COMMAND-LINE attribute of

36

MEAD User Documentation

the Centroid FEATURE element.

<Change the IDF database>
Replace "enidf" with "cnidf" in the SCRIPT attribute of
the Centroid FEATURE element.
Replace "enidf" with "cnidf" in the COMMAND-LINE attribute of
the RERANKER element.

4. Run MEAD on the example.

Once the segmented documents are converted to docsent format and a cluster file is produced (by the above
commands), you are ready to run MEAD using driver.pl:

% cat mead.config | ./driver.pl > ../data/commonpy/commonpy.extract
% ./extract-to-summary.pl \

../data/commonpy/commonpy.list.cluster ../data/commonpy/docsent \

../data/commonpy/commonpy.extract > ../data/commonpy/commonpy.summary

13.2 Porting to Other Languages

TODO: Someone who has done this, write me.

14 Training MEAD using Support Vector Machines

TODO: Someone who has used SVM, rewrite me.

This section describes the data format and instructions for training and evaluation for sentence extraction in
MEAD using Support Vector Machines(SVM). Note that training MEAD amounts to little more than selecting
feature weights for MEAD’s classifier, thus any other toolkit that can learn a linear combination given training
data can be used in place of SVM.

14.1 Data Format

The format of training, tuning (development), and testing data are similar. The format is also similar to the data
format expected by the SVM package. Each data file contains cases or samples. Each sample corresponds to a
sentence and its feature values. Each sample is described by one line of record with syntax as follows:

<class> <feature-id1>:<feature-value1> <feature-id2>:<feature-value2> ...

<class> can be 1 or -1 representing the corresponding sentence is included or not included in the sample
summary.

<feature-idx> is an integer representing a feature id.

<feature-valuex> is a real number representing a feature value.

Therefore, each record contains those features and their corresponding values for a particular sentence. It also
contains whether or not the sentence is included in the sample summary.

Note that the feature values should be normalized so that the values fall between 0 and 1.

14.2 Porting

• Make a directory, e.g. trainablemead which will contain all the data files and SVM package.

• Download SVM package

37

MEAD User Documentation

• Copy svmclassify.c to replace the original svmclassify.c (save a backup of the original svmclassify.c as
advised)

• Compile the SVM package

• Prepare the training, tuning (development), and testing data. Follow the data format described above. (Note
that the feature values should be normalized.)

14.3 Training

%SVM/svm learn -j <cost-parameter> <training.data> <learned-model>
where:
<cost-parameter>is a parameter by which training errors on positive examples outweight errors on negative ex-
amples (default 1)
<training.data> is the training data set
<learned-model> is the output learned model
e.g.
%SVM/svm learn -j 5 training.data learned-model-j5

The above command invoke the training process using the training data (training.data) with cost parameter 5.
The output of the learned model is stored in the file learned-model-j5. This learned-model will be used in the

tuning and evaluation stages

14.4 Tuning (Development)

% SVM/svm classify<train.dev.data> <learned-model>
where:
<train.dev.data> is the tuning (development) data set
<learned-model> is the learned model obtained from the training stage
e.g.

% SVM/svm classify train.dev.data learned-model-j5

This command invokes the classification process on the tuning data - train.dev.data using the learned model -
learned-model-j5. The linear weights of each feature are displayed. The accuracy, precision, and recall metrics
are also shown.

Typically, one will conduct training using different parameters such as different cost factors. Then invoke the
classification process for each learned model. One can choose the desired model based on a particular metric such
as recall.

14.5 Testing

% SVM/svm classify<testing.data> <learned-model>
where:
<testing.data> is the testing data<learned-model> is the selected learned model after tuning
e.g.
% SVM/svm classify testing.data learned-model-j5

This command invokes the classification process on the testing data - testing.data

15 The MEAD Web site

The MEAD project’s new Web page is at the University of Michigan. All versions of MEAD can be downloaded
there.

http://tangra.si.umich.edu/clair/mead

38

MEAD User Documentation

The MEAD project also has an older Web page at Johns Hopkins University. MEAD v3.06 and below can
be obtained there. Additionally, this web page contains information about the JHU Summer 2001 Workshop, the
Automatic Summarization of Multiple Documents (ASMD) group, its participants, and their contact information.

http://www.clsp.jhu.edu/ws2001/groups/asmd

16 Frequently Asked Questions

16.1 Is additional MEAD-compatible data available?

All the data used at the JHU workshop will be released soon in conjunction with the Linguistic Data Consortium
(LDC). Check the MEAD web page often, or better yet, subscribe to the MEAD mailing list. See below.

16.2 Is there a mailing list for MEAD?

You betcha. Visit the MEAD homepage for subscription information:

http://tangra.si.umich.edu/clair/mead

16.3 Can I contribute to MEAD?

Sure. Please send mail to the MEAD mailing list:

mead@majordomo.si.umich.edu

16.4 Do I need a license to use MEAD?

Not for the moment. Once we are beyond the beta stage, we will look into this issue.

16.5 How can I get help?

Please refer to the MEAD homepage for help.

http://tangra.si.umich.edu/clair/mead

If all else fails, send mail to the MEAD mailing list:

mead@majordomo.si.umich.edu

16.6 How can I make sure I understand the details of how MEAD works?

As an exercise, try implementing your own features (e.g., CueWord) or rerankers (e.g., MMR).

17 Demos

• NewsInEssence (http://www.newsinessence.com) NewsInEssence is a freely accessible news
search and summarization system maintain by the CLAIR group at the University of Michigan’s School
of Information. The CLAIR group also has strong ties to the Department of Electrical Engineering and
Computer Science.

• Online MEAD Demo (http://tangra.si.umich.edu/clair/meaddemo) The Online MEAD
Demo is a web interface to an older version of MEAD. The user can summarize documents on his local
machine, generic text, or the contents of a url (or a combination of all three).

39

MEAD User Documentation

18 Future Work

Much work has been put into MEAD, but much still remains to be done:

1. Finish moving repeated code to library modules, e.g. SimWithFirst feature script.

2. Script for extracting text from a url, or a local html file.

3. Sentjudge as the output of MEAD.

4. Script for building a .cluster file and .docsent files from plain text.

5. Build MEAD API.

6. Improve, e.g., MEAD::Extract::readextract by returning not only the sentrefs, but also the SYSTEM, RUN,
QID, etc. in a hash of things.

7. combine driver.pl and mead.pl, moving most functionality to the MEAD API.

8. pass datadir via stdin to feature scripts (and on to MEAD::SentFeature::extractsentfeatures) along with
cluster filename.

9. Support query-based summaries in mead.pl

10. Add choice of policies on feature caching: recompute, don’t save on disk, do plausibility check, etc.

11. Allow the user to specify that default features (Length, Centroid, Position) NOT be computed, perhaps
using a ’-nofeature’ option in mead.pl

12. Differentiate between weighted features and cutoff features, perhaps with a ’Length-cut’-ish suffix.

13. Support Chinese (and other language) summaries in mead.pl. This should be relatively easy, as all we really
have to do is segment in a language-dependant way, and do have IDF databases for other languages.

14. Support summarization of plain text documents as input to mead.pl.

15. make DTD’s better, more consistent (with each other), and make things make sense.

16. Improve MEAD’s robustness and error checking (check for errors in returned XML data from classifier,
reranker, etc.)

17. Build suite of regression and unit tests for MEAD.

18. Describe docpos, docjudge, etc., possibly describing how each is built/computed.

19. Describe how segmentation is done (it isn’t currently).

20. Improve the default segmenter and allow the user to specify the segmentation tool to use.

21. Add relevance correlation to MEAD Eval

22. Include evaluation of summaries (as opposed to extracts) with content-based measures on meadeval.pl.

23. Allow more flexibility in meadeval.pl

24. Improve Install.PL.

25. Finish this document, including making sure that all examples work (build automated tests).

26. Fill in cross-references in this document, instead of saying, e.g., “See the MEAD Architecture Section”.

27. ... and for those that find recursion funny: Organize and prioritize this TODO list.

40

MEAD User Documentation

19 Credits

Research on MEAD was partially supported by NSF-IIS-ITR Grant 0082884 as well as NSF-IIS Grant 0097467,
which included support from the Defense Advanced Research Projects Agency.
The following people have been involved in the development in one form or another.

• Dragomir Radev: MEAD 1.0 (2000)

• Sasha Blair-Goldensohn: MEAD 2.0 (Spring 2001)

• John Blitzer, Elliott Drabek, Arda Çelebi, Hong Qi, Dragomir Radev, Simone Teufel, Horacio Saggion, Wai
Lam, Danyu Liu: MEAD 3.01-3.06 (Summer and Fall 2001)

• Arda Çelebi: Web site at Johns Hopkins and distribution.

• Michael Topper: Online MEAD Demo, documentation, and porting.

• Adam Winkel: MEAD 3.07, NewsInEssence, and documentation.

• Inderjeet Mani, Chin-Yew Lin: project affiliates.

• Fred Jelinek, Bill Byrne, Sanjeev Khudanpur, Laura Graham, Jacob Laderman: hosts of the Johns Hopkins
2001 Summer Workshop where MEAD 3.0 was developed.

• Stephanie Strassel, Chris Cieri, David Graff (all from LDC) - corpus creation and annotation.

• Ralph Weischedel, Regina Barzilay, David Day, Greg Silber, Dan Melamed, Sean Boisen: miscellaneous
advice and resources.

• The MEAD beta testers, especially John Murdie, Hans van Halteren, Wessel Kraaij, and Tristan Miller.

References

[Man01] Inderjeet Mani. Automatic Summarization. John Benjamins Publishing Company, Amster-
dam/Philadephia, 2001.

[RJB00] Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. Centroid-Based Summarization
of Multiple Documents: Sentence Extraction, Utility-Based Evaluation, and User Studies. InPro-
ceedings of the 1st Conference of the North American Chapter of the Association for Computational
Linguistics, Seattle, WA, April 2000. Workshop on Summarization.

[RTS+02] Dragomir R. Radev, Simone Teufel, Horacio Saggion, Wai Lam, John Blitzer, Arda Çelebi, Hong
Qi, Elliott Drabek, and Danyu Liu. Evaluation of Text Summarization in a Cross-lingual Information
Retrieval Framework. Technical report, Center for Language and Speech Processing, Johns Hopkins
University, Baltimore, MD, June 2002.

A XML DTDs

A.1 cluster.dtd

<!ELEMENT CLUSTER (D)*>
<!ATTLIST CLUSTER

LANG (CHIN|ENG) "ENG">

<!ELEMENT D EMPTY>
<!ATTLIST D

DID ID #REQUIRED
ORDER CDATA #IMPLIED>

41

MEAD User Documentation

A.2 docjudge.dtd

<!ELEMENT DOC-JUDGE (D)*>
<!ATTLIST DOC-JUDGE

QID CDATA #REQUIRED
SYSTEM CDATA #REQUIRED
LANG (CHIN|ENG) "ENG">

<!-- LANG refers to the language of the retrieval process.
Thus, it is the language of the documents.
However, the original language of the query might be
different.
Look this up in QID. -->

<!ELEMENT D EMPTY>
<!ATTLIST D

DID ID #REQUIRED
RANK CDATA #IMPLIED
CORR-DOC CDATA #IMPLIED
SCORE CDATA #REQUIRED>

42

MEAD User Documentation

A.3 docpos.dtd

<!-- DTD for POS tagged text -->
<!ELEMENT DOCPOS (EXTRACTION-INFO?, BODY)>
<!ATTLIST DOCPOS

DID CDATA #REQUIRED
DOCNO CDATA #IMPLIED
LANG (CHIN|ENG) "ENG"
CORR-DOC CDATA #IMPLIED>
<!-- DID : documentid

LANG: language -->

<!ELEMENT EXTRACTION-INFO EMPTY>
<!ATTLIST EXTRACTION-INFO

SYSTEM CDATA #REQUIRED
RUN CDATA #IMPLIED
COMPRESSION CDATA #REQUIRED
QID CDATA #REQUIRED>

<!ELEMENT BODY (HEADLINE?,TEXT)>

<!ELEMENT HEADLINE (S)*>
<!ELEMENT TEXT (S)*>

<!ELEMENT S (W)*>
<!ATTLIST S

PAR CDATA #REQUIRED
RSNT CDATA #REQUIRED
SNO CDATA #REQUIRED>
<!-- PAR: paragraph no

RSNT: relative sentence no (within paragraph)
SNO: absolute sentence no -->

<!ELEMENT W (#PCDATA)>
<!ATTLIST W

C CDATA #REQUIRED
L CDATA #IMPLIED>

<!-- C is the POS category. L is the lemma -->

43

MEAD User Documentation

A.4 docsent.dtd

<!-- DTD for sentence-segmented text -->
<!ELEMENT DOCSENT (EXTRACTION-INFO?, BODY)>
<!ATTLIST DOCSENT

DID CDATA #REQUIRED
DOCNO CDATA #IMPLIED
LANG (CHIN|ENG) "ENG"
CORR-DOC CDATA #IMPLIED>
<!-- DID : documentid

LANG: language -->

<!ELEMENT EXTRACTION-INFO EMPTY>
<!ATTLIST EXTRACTION-INFO

SYSTEM CDATA #REQUIRED
RUN CDATA #IMPLIED
COMPRESSION CDATA #REQUIRED
QID CDATA #REQUIRED>

<!ELEMENT BODY (HEADLINE?,TEXT)>

<!ELEMENT HEADLINE (S)*>
<!ELEMENT TEXT (S)*>

<!ELEMENT S (#PCDATA)>
<!ATTLIST S

PAR CDATA #REQUIRED
RSNT CDATA #REQUIRED
SNO CDATA #REQUIRED>
<!-- PAR: paragraph no

RSNT: relative sentence no (within paragraph)
SNO: absolute sentence no -->

A.5 document.dtd

<!-- DTD for original, non-segmented text -->
<!ELEMENT DOCUMENT (EXTRACTION-INFO?, BODY)>
<!ATTLIST DOCUMENT

DID CDATA #REQUIRED
DOCNO CDATA #IMPLIED
LANG (CHIN|ENG) "ENG"
CORR-DOC CDATA #IMPLIED>
<!-- DID : documentid

LANG: language -->

<!ELEMENT EXTRACTION-INFO EMPTY>
<!ATTLIST EXTRACTION-INFO

SYSTEM CDATA #REQUIRED
RUN CDATA #IMPLIED
COMPRESSION CDATA #REQUIRED
QID CDATA #REQUIRED>

<!ELEMENT BODY (HEADLINE?,TEXT)>

<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT TEXT (#PCDATA)>

44

MEAD User Documentation

A.6 extract.dtd

<!ELEMENT EXTRACT (S)*>
<!ATTLIST EXTRACT

QID CDATA #REQUIRED
COMPRESSION CDATA #REQUIRED
SYSTEM CDATA #REQUIRED
JUDGE CDATA #IMPLIED
JUDGENO CDATA #IMPLIED
RUN CDATA #IMPLIED
SENTS_TOTAL CDATA #IMPLIED
WORDS_TOTAL CDATA #IMPLIED
LANG CDATA #REQUIRED>

<!ELEMENT S EMPTY>
<!ATTLIST S

ORDER CDATA #REQUIRED
DID CDATA #REQUIRED
SNO CDATA #IMPLIED
PAR CDATA #IMPLIED
RSNT CDATA #IMPLIED
UTIL CDATA #IMPLIED>

A.7 mead-config.dtd

<!ELEMENT MEAD-CONFIG (FEATURE-SET, CLASSIFIER, RERANKER,
COMPRESSION) >
<!ATTLIST MEAD-CONFIG

LANG CDATA #REQUIRED
CLUSTER-PATH CDATA #IMPLIED
DATA-DIRECTORY CDATA #IMPLIED
TARGET CDATA #IMPLIED >

<!ELEMENT FEATURE-SET (FEATURE*) >
BASE-PATH CDATA #IMPLIED >

<!ELEMENT FEATURE EMPTY >
<!ATTLIST FEATURE

FEATURE CDATA #REQUIRED >

<!ELEMENT CLASSIFIER EMPTY >
<!ATTLIST CLASSIFIER

COMMAND-LINE CDATA #REQUIRED
SYSTEM CDATA #IMPLIED
RUN CDATA #IMPLIED >

<!ELEMENT RERANKER EMPTY >
<!ATTLIST RERANKER

COMMAND-LINE CDATA #REQUIRED>

<!ELEMENT COMPRESSION EMPTY >
<!ATTLIST COMPRESSION

BASIS (sentences|words) #REQUIRED
PERCENT CDATA #IMPLIED
ABSOLUTE CDATA #IMPLIED >

45

MEAD User Documentation

A.8 query.dtd

<!ELEMENT QUERY (TITLE,DESCRIPTION?,NARRATIVE?)>
<!ATTLIST QUERY

QID CDATA #REQUIRED
QNO CDATA #REQUIRED
LANG (CHIN|ENG) "ENG"
TRANSLATED (YES|NO) "NO"
ORIGLANG (CHIN|ENG) "CHIN"
TRANS-METHOD (AUTO|MAN) "AUTO">

<!-- QID: unique query no, eg. 125-CA or 125-E
QNO: LDC query no for content, eg. 125
LANG: of query
TRANSLATED: is it an original query or not?
ORIGLANG: If translated, from which language (from the other
one, of course!)
TRANS-METHOD: Automatically translated or manually? -->

<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT NARRATIVE (#PCDATA)>

46

MEAD User Documentation

A.9 reranker-info.dtd

<!-- DTD for input to rerankers -->
<!ELEMENT RERANKER-INFO (COMPRESSION, CLUSTER, SENT-JUDGE)

<!ELEMENT COMPRESSION EMPTY>
<!ATTLIST COMPRESSION

PERCENT CDATA #REQUIRED
BASIS CDATA #REQUIRED>

<!ELEMENT CLUSTER (D)*>
<!ATTLIST CLUSTER

LANG (CHIN|ENG) "ENG">

<!ELEMENT D EMPTY>
<!ATTLIST D

DID ID #REQUIRED
ORDER CDATA #IMPLIED>

<!ELEMENT SENT-JUDGE (S)*>
<!ATTLIST SENT-JUDGE

QID CDATA #REQUIRED>

<!ELEMENT S (JUDGE)*>
<!ATTLIST S

DID CDATA #REQUIRED
PAR CDATA #REQUIRED
RSNT CDATA #REQUIRED
SNO CDATA #REQUIRED>

<!ELEMENT JUDGE EMPTY>
<!ATTLIST JUDGE

N CDATA #REQUIRED
UTIL CDATA #REQUIRED>

A.10 sentalign.dtd

<!ELEMENT SENTALIGN (SENT+)>
<!ATTLIST SENTALIGN

ENG CDATA #REQUIRED
CHI CDATA #REQUIRED
LANG CDATA #REQUIRED>

<!ELEMENT SENT EMPTY>
<!ATTLIST SENT

ORDER CDATA #REQUIRED
EDID CDATA #REQUIRED
ESNO CDATA #REQUIRED
CDID CDATA #REQUIRED
CSNO CDATA #REQUIRED>

<!-- ORDER: the pairwise number
EDID: english document name
ESNO: english sentence number
CDID: chinese document name
CSNO: chinese sentence number -->

47

MEAD User Documentation

A.11 sentfeature.dtd

<!ELEMENT SENT-FEATURE (S)*>

<!ELEMENT S (FEATURE)*>
<!ATTLIST S

DID CDATA #REQUIRED
SNO CDATA #REQUIRED>

<!ELEMENT FEATURE EMPTY>
<!ATTLIST FEATURE

N CDATA #REQUIRED
V CDATA #REQUIRED>

A.12 sentjudge.dtd

<!ELEMENT SENT-JUDGE (S)*>
<!ATTLIST SENT-JUDGE

QID CDATA #REQUIRED>

<!ELEMENT S (JUDGE)*>
<!ATTLIST S

DID CDATA #REQUIRED
PAR CDATA #REQUIRED
RSNT CDATA #REQUIRED
SNO CDATA #REQUIRED>

<!ELEMENT JUDGE EMPTY>
<!ATTLIST JUDGE

N CDATA #REQUIRED
UTIL CDATA #REQUIRED>

A.13 sentrel.dtd

<!ELEMENT SENT-REL (R)*>

<!ELEMENT R (RELATION)*>
<!ATTLIST R

SDID CDATA #REQUIRED
SSENT CDATA #REQUIRED
TDID CDATA #REQUIRED
TSENT CDATA #REQUIRED>

<!ELEMENT RELATION EMPTY>
<!ATTLIST RELATION

TYPE CDATA #REQUIRED
JUDGE CDATA #REQUIRED>

48

